当前位置:文档之家› 辽工大研究生2002级数值分析

辽工大研究生2002级数值分析

辽工大研究生2002级数值分析
辽工大研究生2002级数值分析

数值分析课程设计题目与要求

数值分析课程设计题目与要求 (10级应数及创新班) [设计题一] 编写顺序Gauss消去法和列主元Gauss消去法的函数,再分别调用这两个函数求解下面的84阶方程组: = , 然后考虑将方程组的阶数取为10至100之间多个值进行求解。将你的计算结果与方程组的精确解进行比较。从“快”、“准”、“省”三个方面分析以上两个算法,试提出改进的算法并加以实现和验证。 [设计题二] 编写平方根法和改进的平方根法(参见教材《计算方法》P54的例题2.5)的函数,然后分别调用这两个函数求解对称正定方程组Ax=b,其中A和b分别为: (1)系数矩阵A为矩阵(阶数取为10至100之间多个值): , 向量b随机地选取; (2)系数矩阵A为Hilbert矩阵(阶数取为5至40之间多个值),即A的第i行第j列元素,向量b的第i个分量取为。将你的计算结果与方程组的精确解进 行比较。 若出现问题,分析其原因,提出改进的设想并尝试实现之。

对于迭代法 ,......)2,1,0(99.021=-=+k x x x k k k , 它显然有不动点0* =x 。试设计2个数值实验 得到收敛阶数的大概数值(不利用判定收敛阶的判据定理): (1) 直接用收敛阶的定义; (2) 用最小二乘拟合的方法。 [设计题四] 湖水在夏天会出现分层现象,接近湖面温度较高,越往下温度变低。这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。如果把水温T 看成深度x 的函数T(x),有某个湖的观测数据如下: 环境工程师希望: 1) 用三次样条插值求出T(x)。 2) 求在什么深度处dx dT 的绝对值达到最大( 即02 2=dx T d )。 [设计题五] 某飞机头部的光滑外形曲线的型值点坐标由下表给出: ...值y 及一阶、二阶导数值y ’,y ”。绘出模拟曲线的图形。

贵州师范大学计算数学《数值分析》考研复试大纲

贵州师范大学硕士研究生入学考试大纲(复试) (科目名称:数值分析) 一、考查目标 本《考试大纲适用于贵州师范大学数学科学学院数学专业硕士研究生入学考试复试。数值分析是高等院校数学与应用数学、信息与计算科学等理工科专业的一门专业核心必修课程。它是一门内容丰富,研究方法深刻,有自身理论体系的课程。其研究对象是解决各种数学问题的数值计算程序、方法与相关理论。 1、考试目的 测试考生对数值计算方法的基本原理和基本方法的掌握,以及对数值分析的理解及基本应用能力。考生应该掌握拉格朗日插值方法、数值积分、数值微分、方程求根、线性代数方程组的数值解法,并有应用这些方法解决和分析数值计算中常见问题的基本能力。 《数值分析》是我校数学科学学院招收全日制硕士研究生而设置的具有选拔性质的复试科目,其目的是考察学生是否具备本学科计算数学专业硕士研究生学习所要求的水平,为我校数学科学学院择优选拔硕士研究生提供依据。 2、考试的基本要求 要求学生了解和掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,为今后用计算机去有效地解决实际问题打下基础。 (1)掌握算法的基本原理和思想,包括算法的构造、算法处理的技巧、误差分析、收敛性和稳定性等基本理论。 (2)掌握误差与有效数字定义、函数插值与逼近的方法、积分与微分的数值计算方法、线性方程组的数值解法、非线性方程根的求解方法。 (3)掌握各种算法的理论分析;了解主要算法的设计思路。 二、考试形式与试卷结构 (一)试卷成绩及考试时间 本试卷满分为100分。考试时间为180分钟。 (二)答题方式 闭卷,笔试;所有题目全部为必答题。 (三)试卷内容 数值计算中的误差、拉格朗日插值方法、数值积分、数值微分、方程求根、线

2014级硕士研究生数值分析上机实习报告

2014级硕士研究生数值分析上机实习(第一次) 姓名:学号:学院: 实习题目:分别用二分法和Newton迭代法求方程x3■ 2x210x-20=0的根.实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1.确定实根的个数以及所在区间 2.将最后两次计算结果填入下表(保留8位数字): 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.两种解法的计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第二次)姓名:学号:学院: 实习题目:计算8阶三对角矩阵A=tridiag(0.235, 1.274, 0.235)的行列式.实习目的:掌握计算行列式的方法. 实习要求:首先选择一种算法,然后用C程序语言编程上机进行计算.报告内容: 1.简单描述所采用的算法: 2?计算结果: A 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.写出C语言计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第三次) 姓名:学号:学院: 分别用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组实习题目: 2lx + 9.8y+ 3.4z= 6.7 <2.7x + 1.8y+ 7.2z= 2.4 8.6x + 1.5y + 3.4z = 1.9 实习目的:感受两种迭代法的收敛速度. 首先构造收敛的Jacobi迭代法和Gauss-Seidel迭代法,然后用实习要求: C程序语言编程上机进行求解,初始值均取为0,精确到4位小 数. 报告内容: 1.写出收敛的Jacobi迭代法和Gauss-Seidel迭代法:

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

2009年春季工学硕士研究生学位课程(数值分析)真题试卷

2009年春季工学硕士研究生学位课程(数值分析)真题试卷 (总分:28.00,做题时间:90分钟) 一、填空题(总题数:6,分数:12.00) 1.填空题请完成下列各题,在各题的空处填入恰当的答案。(分数: 2.00) __________________________________________________________________________________________ 解析: 2.已知x=0.045,y=2.013_____ (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:0.902×10 -4) 解析: 3.已知矩阵1 =______,‖A‖ 2 =______. (分数:2.00) __________________________________________________________________________________________ 正确答案:() 解析: 4.设函数f(x)=2x 3 -x+1,则f(x)以x 0 =-1,x 1 =0,x 2 =1为插值节点的二次插值多项式为______.(分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:x+1) 解析: 5.设函数f(x)∈C 2 [x 0 -h,x 0 +h],h>0,则 (分数:2.00) __________________________________________________________________________________________ 正确答案:() 解析: 6.______,该公式的代数精度为_____. (分数:2.00) __________________________________________________________________________________________ 正确答案:() 解析: 二、计算题(总题数:2,分数:4.00) 7.(0,+∞)内实根的分布情况,并用迭代法求出该方程在(0,+∞)内的全部实根,精确至3位有效数字. (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:设,显然f(x)=0在(2,+∞)内无根.在(0,2]内,f"(x)=cosx-

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

数值分析课程课程设计汇总

课 程 设 计 我再也回不到大二了, 大学是那么短暂 设计题目 数值分析 学生姓名 李飞吾 学 号 x x x x x x x x 专业班级 信息计x x x x x 班 指导教师 设 计 题 目 共15题如下 成绩

数值分析课程设计 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?(15621) 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题 解:算法分析:解该问题主要使用递推算法,关于椰子数目的变化规律可以设起初的椰子数为0p ,第一至五次猴子在夜里藏椰子后,椰子的数目分别为01234,,,,p p p p p 再设最后每个人分得x 个椰子,由题: 14 (1)5 k k p p +=- (k=0,1,2,3,4)51(1)5 x p =- 所以551p x =+,11k k p p +=+利用逆向递推方法求解 15 1,4 k k p p +=+ (k=0,1,2,3,4) MATLAB 代码: n=input('n= '); n= 15621 for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; end if p==fix(p), break end end disp([x,p]) 1.2 设,1 5n n x I dx x =+? (1)从0I 尽可能精确的近似值出发,利用递推公式: 11 5(1,2,20)n n I I n n -=-+= 计算机从1I 到20I 的近似值; (2)从30I 较粗糙的估计值出发,用递推公式:

2008级研究生数值分析试题

太原科技大学 2008级硕士研究生08/09学年第一学期 《数值分析》考试试卷 说明:1、Legendre 正交多项式)(x L n 有三项递推关系式: ?? ?? ???=+-++===-+ ,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式: ?? ? ??=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n 一、填空题:(每题4分,共20分) 1、设??? ? ??-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将 x x sin cos 1-改写为 3、设)5()(2 -+=x a x x ?,要使)(1k k x x ?=+局部收敛到5* = x ,则a 的取值范围为 4、近似数235.0* =x 关于真值229.0=x 有 位有效数字。 5、设,1)(3 -+=x x x f 则差商=]3,2,1,0[f 二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式: )4(3 1111-+-++++=n n n n n f f f h y y 其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组

数值分析课程报告

插值法和多项式拟合的研究 摘要 在科研和生产实践中,常常需要通过一组测量数据来寻找变量x与y的函数关系近似表达式。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。拟合法能够是从给定的一组实验数据出发,寻找函数的一个近似表达式,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合。本文主要介绍拉格朗日插值法、埃尔米特插值法、三次样条插值法以及基于最小二乘法的多项式拟合。 关键词:拉格朗日插值,埃尔米特插值,样条插值,多项式拟合

1方法的意义 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法的原理是用一个简单函数逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。它要求给出函数的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定一个简单的函数()x ?作为()f x 的近似,概括地说,就是用简单函数为离散数组建立连续模型。插值法在实际应用中非常广泛,但是它也有明显的缺陷,一是测量数据常常带有测试误差,而插值多项式又通过所有给出的点,这样就是插值多项式保留了这些误差;二是如果实际得到的数据过多,则必然得到次数较高的插值多项式,这样近似的效果并不理想。拟合法能够很好的解决这些问题,它从给定的一组实验数据出发,寻找函数的一个近似表达式y=()x ?,该近似表达式能反映数据的基本趋势而又不一定过全部的点,即曲线拟合的问题,函数的近似表达式y=()x ?称为拟合曲线。常用最小而二乘法来确定拟合曲线。 2插值法的介绍 2.1 插值法定义 设 f (x )为[a ,b ]上的函数,在互异点n x x x ,...,,10处的函数值分别为 )(),...,(),(10n x f x f x f ,构造一个简单函数 ?(x ) 作为函数 f (x ) 的近似表达式y = f (x ) ≈ ?(x ),使 )()(i i x f x =? , i =0, 1, 2, …,n (1.0) 则称?(x ) 为关于节点n x x x ,...,,10的插值函数;称n x x x ,...,,10 为插值节点;称 ))((i i x f x , i =1,2,… , n 为插值点;f (x ) 称为被插值函数。式(1.0)称为插值条 件。这类问题称为插值问题。插值的任务就是由已知的观测点,为物理量(未知量)建立一个简单的、连续的解析模型,以便能根据该模型推测该物理量在非观测点

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

硕士研究生数值分析试卷

数值分析(研究生,2008-12-15) 1.(10分)求函数???≤≤++<≤-+=1 0,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式 x e a x a a x 210)(++=φ。 2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量 ???? ??????----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。同时计算该矩阵的1-条件数和谱条件数。

3.(15分)已知函数x x f sin )(=在36.0,3 4.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。

4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2 π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。请从理论上估计达到所需精度所需的迭代次数。

5.(15分)用Gauss-Seidel 迭代法解方程组 ?????? ????-=????????????????????---542834*********x x x 取初始近似向量0[0,0,0]T x =,估计达到4位有效数字需要的迭代次数,并实际计算之。就该具体问题分析计算过程中总的乘除法计算量。

6. (10分)应用拟牛顿法解非线性方程组 ?????=-+=-+. 12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。 7.(10分) 求解矛盾方程组 ???????=++=++=++=++2 32328.12221321321 321321x x x x x x x x x x x x

数值分析课程设计(最终版)

本文主要通过Matlab 软件,对数值分析中的LU 分解法、最小二乘法、复化Simpon 积分、Runge-Kutta 方法进行编程,并利用这些方法在MATLAB 中对一些问题进行求解,并得出结论。 实验一线性方程组数值解法中,本文选取LU 分解法,并选取数据于《数值分析》教材第5章第153页例5进行实验。所谓LU 分解法就是将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L 、U 元素的递推公式,而不需要任何步骤。用此方法得到L 、U 矩阵,从而计算Y 、X 。 实验二插值法和数据拟合中,本文选取最小二乘拟合方法进行实验,数据来源于我们课堂学习该章节时的课件中的多项式拟合例子进行实验。最小二乘拟合是一种数学上的近似和优化,利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。利用excel 的自带函数可以较为方便的拟合线性的数据分析。 实验三数值积分中,本文选取复化Simpon 积分方法进行实验,通过将复化Simpson 公式编译成MATLAB 语言求积分∫e ;x dx 1 0完成实验过程的同时,也对复化Simpon 积分章节的知识进行了巩固。 实验四常微分方程数值解,本文选取Runge-Kutta 方法进行实验,通过实验了解Runge-Kutta 法的收敛性与稳定性同时学会了学会用Matlab 编程实现Runge-Kutta 法解常微分方程,并在实验的过程中意识到尽管我们熟知的四种方法,事实上,在求解微分方程初值问题,四阶法是单步长中最优秀的方法,通常都是用该方法求解的实际问题,计算效果比较理想的。 实验五数值方法实际应用,本文采用最小二乘法拟合我国2001年到2015年的人口增长模型,并预测2020年我国人口数量。 关键词:Matlab ;LU 分解法;最小二乘法;复化Simpon 积分;Runge-Kutta

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关 于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、若(),0,1,2,3i l x i =是以01231,3,,x x x x ==为插值节点的Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的 直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A c o n d 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln 0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用Newton 插值法求ln 0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析课程设计实验指导书

数值分析实验指导书 实验一 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子? 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题(15621)。 1.2 设,1 05n n x I dx x =+? (1)从0I 尽可能精确的近似值出发,利用递推公式: 11 5(1,2,20)n n I I n n -=-+= 计算机从1I 到20I 的近似值; (2)从30I 较粗糙的估计值出发,用递推公式: 111 (30,29,,3,2)55n n I I n n -=-+= 计算从1I 到20I 的近似值; (3)分析所得结果的可靠性以及出现这种现象的原因。 1.3 绘制Koch 分形曲线 问题描述:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的另两条边代替,形成具有5个结点的新的图形(图1-4);在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的另两条边代替,再次形成新的图形(图1-5),这时,图形中共有17个结点。这种迭代继续进行下去可以形成Koch 分形曲线。在迭代过程中,图形中的结点将越来越多,而曲线最终显示细节的多少取决于所进行的迭代次数和显示系统的分辨率。Koch 分形曲线的绘制与算法设计和计算机实现相关。

数值分析教案

数值分析教案 土建学院 工程力学系 2014年2月 一、课程基本信息 1、课程英文名称:Numerical Analysis

2、课程类别:专业基础课程 3、课程学时:总学时32 4、学分:2 5、先修课程:《高等数学》、《线性代数》、《C 语言》 6、适用专业:工程力学 二、课程的目的与任务: 数值分析是工程力学专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握数值分析的常用的基本的数值计算方法 2.掌握数值分析的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 数值分析(计算方法)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

《数值分析》教学大纲

《数值代数》教学大纲 (学时50+计算实习学时16) 一、课程简述 数值代数课程在本科生阶段“数学分析”和“高等代数”的基础上,进一步深入学习和理解与实际应用密切相关的矩阵的理论知识与数值算法。 “数值线性代数”是信息与计算科学、数学与应用数学专业的必修课程,讲述矩阵计算的基础知识,求解线性方程组的直接方法和古典迭代法,最小二乘问题的数值解法,矩阵特征值问题的数值算法,同时做到理论与实践相结合,设计上机实验题目,依托学院的机房开展上机实验,培养学生的实际动手能力,能够利用C++语言或MATLAB语言编写程序。 二、本科相关课程 数学分析、高等代数 三、课程内容、基本要求与学时分配 该课程的上课时间分为两部分:课堂教学及上机实验,在课堂教学方面,要求学习并掌握以下内容: 1.范数、稳定性及敏度分析 6学时 主要包括矩阵与向量的范数、矩阵三种分解(Jordan分解、Schur分解、奇异值分解)和对称阵的特征分解、两种正交变化(Householder变换、Givens变换)、浮点运算、问题的条件及算法的稳定性。 2.求解线性方程组的直接法 8学时 介绍三角形方程组的数值解法、(带选主元策略)Gauss消去法、特殊矩阵的三角分解、Gauss消去法的误差分析及迭代改进. 3.求解线性方程组的古典迭代法 8学时 介绍迭代法的基础知识、Jacobi迭代法、Gauss-Seidel迭代法、SOR迭代法及其收敛性定理以及各种迭代法的加速. 4.Krylov子空间迭代法 6学时 最速下降法、共轭梯度法、GMRES及其收敛性 5.特征值问题的计算 12学时 主要介绍幂法与反幂法,Rayleigh商迭代,同时迭代法,上Hessenberg化,QR算法与双重步位移的隐式QR算法,计算对称特征值问题的算法主要有:Jacobi迭代,二分法,分而治之法,对称QR算法等。 6.最小二乘问题 6学时 Household变换、Givens变换、QR分解、正则化方法 7. 奇异值分解 4学时

武汉大学07数值分析研究生试卷(A)

武 汉 大 学 2007~2008学年第一学期硕士研究生期末考试试题 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)给定方程 01)1()(=--=x e x x f (1) 分析该方程存在几个根; (2) 用迭代法求出这些根,精确至2位有效数; (3) 说明所用的迭代格式是收敛的. 二、(15分)设线性方程组为 0,,221122221211212111≠???=+=+a a b x a x a b x a x a (1)证明用Jacobi 迭代法和Gauss-Seidel 迭代法解此方程组要么同时收敛,要么同时发散. (2) 当同时收敛时比较其收敛速度. 三、(10分)设A 为非奇异矩阵,方程组b Ax =的系数矩阵A 有扰动A ?,受扰动后的方程组为b x x A A =?+?+))((,若1||||||||1

五、(10分)已知数据 设2)1()(-+=x b ax x f ,求常数a ,b , 使得 ∑==-30 2min ])([i i i y x f 六、(15分)定义内积 ?-=11)()(),(dx x g x f g f 在},,1{2x x Span H =中求 ||)(x x f =的最佳平方逼近元素. 七、(10分)给定求积公式 ?-++-≈h h h Cf Bf h Af dx x f 22)()0()()( 试确定C B A ,,,使此求积公式的代数精度尽可能高,并问是否是Gauss 型公式. 八、(10分)给定微分方程初值问题 ?????=≤≤=2)0(102y x y dx dy 用一个二阶方法计算)(x y 在0.1 , 0.2 处的近似值. 取 1.0=h 计算结果保留5位有效数字。

(完整)北京航空航天大学数值分析课程知识点总结,推荐文档

1.2 误差知识与算法知识 1.2.2 绝对误差、相对误差与有效数字 设a 是准确值x 的一个近似值,记e x a =-,称e 为近似值a 的绝对误差,简称误差。如果||e 的一个上界已知,记为ε,即||e ε≤,则称ε为近似值a 的绝对误差限或绝对误差界,简称误差限或误差界。 记r e x a e x x -= = ,称r e 为近似值a 的相对误差。由于x 未知,实际上总把e a 作为a 的相对误差,并且也记为r e x a e a a -= = ,相对误差一般用百分比表示。r e 的上界,即||r a εε=称为近似值a 的相对误差限或相对误差界。 定义 设数a 是数x 的近似值。如果a 的绝对误差限时它的某一位的半个单位,并且从该位到它的第一位非零数字共有n 位,则称用a 近似x 时具有n 位有效数字。 1.2.3 函数求值的误差估计 设()u f x =存在足够高阶的导数,a 是x 的近似值,则~ ()u f a =是()u f x =的近似值。 若'()0f a ≠且|''()|/|'()|f a f a 不很大,则有误差估计 ~ ~ ()'()() ()'()() e u f a e a u f a a εε≈≈。 若(1) ()'()''()...()0,()0k k f a f a f a f a -====≠,且比值(1)()()/()k k f a f a +不很 大,则有误差估计[] [] ()~ () ~()()()! ()()()! k k k k f a e u e a k f a u a k εε≈≈。 对于n 元函数,有误差估计 ~ 121~ 121 (,,...,) ()() (,,...,) ()() n n i i i n n i i i f a a a e u e a x f a a a u a x εε==?≈??≈?∑ ∑ ;若一阶偏导全为零或很 小,则要使用高阶项。 1.2.4 算法及其计算复杂性 (1)要有数值稳定性,即能控制舍入误差的传播。 (2)两数相加要防止较小的数加不到较大的数中所引起的严重后果。 (3)要尽量避免两个相近的近似值相减,以免严重损失有效数字。 (4)除法运算中,要尽量避免除数的绝对值远远小于被除数的绝对值。 1.3 向量范数与矩阵范数 1.3.1 向量范数 定义 定义在n R 上的实值函数?称为向量范数,如果对于n R 中的任意向量x 和y 满足: (1)正定性:0x ≥,当且仅当0x =时,0x =;

相关主题
文本预览
相关文档 最新文档