2009年春季工学硕士研究生学位课程(数值分析)真题试卷
- 格式:doc
- 大小:19.17 KB
- 文档页数:3
2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈ 6.016.044.001.0)412(01.0)448(=+=⨯++⨯-= 0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f ,0!4)(]4,3,2,1,0[)4(==ξff 三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰的代数精度.解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++= 1)(=x f 时:1110==⎰dx I1]00[121]2[21=-+=n I x x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I 4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ 52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛154153234520320320320221a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H ,解得 5,3=-=b a 因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈110)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -=得得Gauss 点: ,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A 解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈ Newton 迭代公式为1ln 112ln 1-+=----=+k k k k kk k k k x x x x x x x x x令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解. 解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛135152121137253125121211113112即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y 令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n nn n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
姓名学号评分时间120分钟石家庄铁道学院 2009 级硕士研究生考试试卷参考答案及评分标准课程名称 数值分析 任课教师 王亚红一.(1-6题 2分/空;7-10题 3分/空)1. 3,32. 43. -34. )()(max x P x f bx a -≤≤5. )2)(1(!4)(),2(2)4(2--+-x x x f x x ξ 6. 33,3321=-=x x 7. 21<a8.Λ,2,1,0,211721=--=+k x x x x kkk k 9. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=323/22/3212L 10.1,...,2,1,1--=⎩⎨⎧-==+n n k x d x d x k k k kn n β 二(16分).1. 解 :⎢⎢⎢⎣⎡221213112⎥⎥⎥⎦⎤ =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-32/12/1112132/112/31------8分解,b Ly =得⎪⎪⎪⎭⎫⎝⎛=304y解,y Ux =得⎪⎪⎪⎭⎫ ⎝⎛=111x . -----------------------------------------------12分2.Jacobi 迭代法计算公式:初始向量)0(x⎪⎩⎪⎨⎧--=--=--=+++2/)25()236(2/)4()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x , Λ,2,1,0=k ------------------------------16分-----------------------------------7分)2)(1)(1(245)1)(1(65)1(233))()(](,,,[))(](,,[)](,[)()(21032101021001003--+--++++-=---+--+-+=x x x x x x x x x x x x x x x x f x x x x x x x f x x x x f x f x N--------------------10分2.(10分)根据最小二乘原理∑=--=302))((i i i y b ax I 最小,----2分有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00aI bI即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑i i i ii i x y y a b xxx 24----------------------8分即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛36915554a b ,解得b =1.2857,a =2.8286 拟合曲线2857.18286.2+=x y ----------------------10分 四(16分)解: 1.+----=))(())(()()(2010210x x x x x x x x x f x L ))(())(()(2101201x x x x x x x x x f ----+))(())(()(1202102x x x x x x x x x f ---- ------------------------------6分计算=)(0'x L ()()()()2104321x f x f x f h-+- ----------------9分 )()(0'0'x L x f ≈=()()()()2104321x f x f x f h-+- ------------------------------------------12分2.)()(),,(210x L x f x x x ≈∈,))()!1()(()()(1)1(2'++'='++x n f x L x f n n ωξ, x x n f n n 与ξωξ,))()!1()((1)1('+++有关, )()(),,(210x L x f x x x '≈'∈无法估计. )(,2x L x '不是插值节点时当的值不能作为)('x f 的近似值.-----------------16分 五. 解 1.(8分)Λ004.041.10=-I 21021-⨯≤------------------2分 2000011102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I ------------------------4分22111122102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I类推有 8210999910101021102110~10)1~10(110~--⨯=⨯⨯≤-=---=-I I I I I I-----------6分计算到10I 时,误差限为初始0I 的误差限的1010倍,每递推一次误差扩大10倍, 所以这个计算过程是不稳定的。
2009年中南大学硕士研究生“数值分析”课程试题(闭卷,可自带计算器,120分钟)一、设分段多项式(8分)S(x)=⎩⎨⎧≤≤-++≤≤+21,1210,2323x cx bx x x x x是以x = 0,1,2为节点的三次样条函数,试确定系数b ,c 的值。
二、设)3()(2-+=Φx c x x ,问如何选取 c 能保证迭代法)(1k k x x Φ=+具有局部收敛性。
(8分)三、利用列主元素消去法解方程:(8分)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---453311294642321x x x四、求()xf x e =在[0,1]上的一次最佳平方逼近多项式。
(8分)五、已知函数表如下,试用抛物插值求125的近似值,估计截断误差。
(14分)利用Romberg 方法计算积分:dx xx⎰1sin (计算到第一个Romberg 值)。
七、利用改进的Euler 法求解如下初值问题:(14分),1)0(6.00,2)('⎪⎩⎪⎨⎧=≤≤-=y x y x y x y 取步长 h =0.3 。
八、利用反幂法和矩阵的LU 分解技术求下列矩阵A 接近于 p = -6.4 的特征值及其特征向量(保留3位小数迭代计算2次,分解后取1(1,1,1)T Uv =),-1212-4111-6A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
(14分)九、方程组AX=b , 其中10101a A a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
试建立解线性方程组AX=b 的雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时迭代收敛。
(12分)。
《数值分析》I课程试题参考答案及评分标准(中文试卷)( A卷)适用专业年级:信息与计算科学07级 考试时间: 100分钟命题人:吕勇一、解------------------------------------------------------5分则插值多项式。
---------------------------------------- -------10分二、 证明设,以为节点的Lagrange插值多项式为 --3分余项为-----------------------------------------------------6分由于为线性函数,当时,。
--------------------------------9分则:,所以结论得证-------------------------------------------------10分三、证明 ----------------------------------------------------5分-------------------------8分 ---------------------------------------------------10分四、证明设则根据插值多项式原理-------------------------------------------------------------------------------------6分两端在上积分-------------------------------------------------------------10分五、解设,。
--------------------------------------------------------------------3分,---------------------------------------------------------------6分,。
南京工业大学 数值分析 试题(A )答案2009--2010 学年第一学期 使用班级 信科0701应数0701一、填空题 (每小题3分,共30分)1.已知974997.999995≈,则≈-9995100 0.025003126 具有 8 位有效数字。
2.对f(x)=2x 4+x+1,差商f[0,1,2,3,4]= 2 ;f[0,1,2,3,4,5]= 0 。
3.设方程x=ϕ(x)有根x *,且设ϕ(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 1|)(|*<'x ϕ 。
4.⎪⎪⎭⎫ ⎝⎛=011001001001....A ,||A||∝= 2.01 ,cond(A)∝= 404.01 。
5.中矩形公式:)()2()(a b b a f dx x f ba -+=⎰的代数精度为 2 。
6.在区间[1,2]上满足插值条件⎩⎨⎧==1)2(2)1(P P 的一次多项式P(x)= 3-x 。
7.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= a b - 。
8.梯形公式和改进的Euler 公式都是 2 阶的。
9.在区间[0,1]上,函数a x x +=)(1ϕ与函数22)(x x =ϕ正交,则a= -0.75 。
10.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 1)(<J ρ 。
二、计算题 (每题8分,共48分)1.试用Gauss 消元法解下列方程组,计算过程按5位小数进行:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---08.255.190.05.11.40.10.15.26.15.05.12.3321x x x (写出详细过程!) 解:A=⎪⎪⎪⎭⎫ ⎝⎛--2524.01010.0001000.12500.12500.309000.05000.05000.12000.3 (4分) ⎪⎪⎪⎭⎫ ⎝⎛ 2.5000 1.0000 0 0 1.3000 0 1.0000 0 0.5000 0 0 1.0000~ (3分)所以方程组的解为:5.2,3000.1,5000.0321===x x x (1分)2. 给出f(x)的函数表,(1)在表中填上指定阶的差商;(2)写出f(x)的2次牛顿插值多项式;解:(一)表如上 (3分)(二))55.0x )(4.0x (28000.0)4.0x (116.141075.0)x (f --+-+≈ (3分)(三)截断误差)65.0x )(55.0x )(4.0x (6)(f R )3(---=ξ (2分)3.求解超定方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛32121111121x x 的最小二乘解。
东 南 大 学 二〇〇九年攻读硕士学位研究生入学考试试题试题编号:601 试题名称:数学分析一.判断题(判断下列命题正误,若正确请证明,否则请给出反例说明(本题共4小题,每题6分,满分24分).1.[,]a b 上每个单调函数至多有可列个间断点.2.在有界闭区间[,]a b 上黎曼可积的函数必在[,]a b 上有原函数.3.若n a 非负、单调递减,且lim 0n n na →∞=,则级数1n n a ∞=∑收敛. 4.曲线221x y +=上每一点的某邻域内可确定隐函数()y y x =.二.计算题(本题共6小题,每题8分,满分48分).5.求极限21lim[ln(1)]x x x x→∞+-. 6.求极限2222212lim (1)(1)(1)n n n n n n→∞+++ . 7.求幂级数143nn x n ∞=-∑的和函数(0)x ≥. 8.求曲线2226,0x y z x y z ++=++=在点(1,2,1)-处的切线方程.9.计算曲线积分22C ydx xdy I x y -=+⎰,其中C 为曲线33cos ,sin (0)2x t y t t π==≤≤的一段.10.计算曲面积分22(1)84x dydz xydzdx xzdxdy ∑-+-⎰⎰,其中∑是由曲线(0)y x e y a =≤≤绕x 轴旋转所成的旋转曲面,取外侧.三.解答题(本题共8小题,前6小题每题10分,后2小题每题9分,满分78分).11.给定实数0x 及b ,01b <<,令1sin ,1,2,n n x a b x n -=+= ,证明:(1)极限lim n n x →∞存在,记为ξ; (2)ξ是开普勒方程sin x a b x =+的唯一解.12.一个函数f :[,]a b → 称作上半连续的,假如对给定的[,]x a b ∈及0ε>,存在一个0δ>,使得若[,],y a b y x δ∈-<,则()()f y f x ε<+.证明:[,]a b 上的上半连续函数是上有界的,且在某个点[,]c a b ∈处达到最大值.13.设()f x 在开区间(,)I a =+∞内可导,且lim '()x f x →+∞=∞,证明()f x 在I 内必定是非一致连续的.若(,)I a b =是有限开区间,且lim '()x bf x -→=∞,问()f x 在I 内也必定是非一致连续的?14.设1111n nn I x dx +=+⎰,求证:(1)0,n I n →→∞;(2)极限lim n n nI →∞存在,并求出此极限值. 15.设()f x 在区间[0,1]上连续,在(0,1)内有二阶导数,且10(0)(1)0,''()0,()0f f f x f x dx ⋅>>=⎰. 证明:(1)函数()f x 在(0,1)内恰有两个零点;(2)至少存在一点(0,1)ξ∈,使得0'()()f f x dx ξξ=⎰. 16.设()f x 在0x =的某邻域内有二阶连续导数,且0()lim 0x f x x →=.证明:级数11()n n f n∞=∑绝对收敛. 17.设2222sin(),(,)(0,0),(,)0,(,)(0,0),x y xy x y f x y x y x y ⎧+≠⎪=+⎨⎪=⎩讨论f 在原点的连续性、可微性以及两个一阶偏导数在原点的连续性.18.证明反常积分20sin 1x px x +∞+⎰关于[,)p a ∈+∞一致收敛,其中0a >为常数.。
数值分析(研究生,2008-12-15)1.(10分)求函数⎩⎨⎧≤≤++<≤-+=10,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式x e a x a a x 210)(++=φ。
2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。
同时计算该矩阵的1-条件数和谱条件数。
3.(15分)已知函数x x f sin )(=在36.0,34.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。
用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。
4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。
请从理论上估计达到所需精度所需的迭代次数。
5.(15分)用Gauss-Seidel 迭代法解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---542834*********x x x 取初始近似向量0[0,0,0]Tx =,估计达到4位有效数字需要的迭代次数,并实际计算之。
就该具体问题分析计算过程中总的乘除法计算量。
6. (10分)应用拟牛顿法解非线性方程组⎪⎩⎪⎨⎧=-+=-+.12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。
7.(10分) 求解矛盾方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++=++232328.12221321321321321x x x x x x x x x x x x8. (10分)用复合Simpson 公式计算积分⎰=21sin )(xdx f I 讨论在误差要求不超过410-的条件下的步长。
课程编号:12000044 北京理工大学2010-2011学年第一学期2009级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题 (2 0×2′)1. 设x =0.231是精确值x *=0.229的近似值,则x 有 位有效数字。
2. 设⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A ,‖A ‖∞=___ ____,‖X ‖∞=__ _____,‖AX ‖∞≤____ ___ (注意:不计算‖AX ‖∞的值) 。
3. 非线性方程f (x )=0的迭代函数x =ϕ(x )在有解区间满足 ,则使用该迭代函数的迭代解法一定是局部收敛的。
4. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= ,f [20,21,22,23,24,25,26,27,28]= 。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式),若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式);如果要估计结果的舍入误差,应该选用插值公式中的 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( ;所以当系数a i (x )满足 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 。
2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。
设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。
,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。
》0 —IT。
〉;+1| = 1。
|光 - 司 < 1。
5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。
1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。
,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。
R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。
进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。
2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1.(B)2. (C)3.(D)无穷多个.(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-. (D )1a =-,16b =.(3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是 (A)(0,1).(B)(1,)2π. (C)(,)2ππ. (D)(,)π+∞.(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫⎪⎝⎭.(B)**23OB A O ⎛⎫⎪⎝⎭.(C)**32O A BO ⎛⎫⎪⎝⎭.(D)**23O A BO ⎛⎫⎪⎝⎭. (6)设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为(A)210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B)110120002⎛⎫⎪⎪ ⎪⎝⎭.(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(7)设事件A 与事件B 互不相容,则(A)()0P AB =.(B)()()()P AB P A P B =. (C)()1()P A P B =-.(D)()1P A B ⋃=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为1{0}{1}2P Y P Y ====,记()z F Z 为随机变量Z XY =的分布函数,则函数()z F Z 的间断点个数为(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)cos 0x x →= .(10)设()y x z x e =+,则(1,0)zx ∂=∂ .(11)幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 . (12)设某产品的需求函数为()Q Q P =,其对应价格P 的弹性0.2p ξ=,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设(1,1,1)T α=,(1,0,)T k β=,若矩阵T αβ相似于300000000⎛⎫⎪⎪ ⎪⎝⎭,则k = .(14)设1X ,2X ,…,n X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10 分) 计算二重积分()Dx y dxdy -⎰⎰,其中22{(,)(1)(1)2,}D x y x y y x =-+-≤≥. (18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数()f x 在[],a b 上连续,在(),a b 上可导,则(),a b ξ∈,得证()'()()()f b f a f b a ξ-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()0,,(0)σσ>内可导,且'0lim ()x f x A +→=,则'(0)f +存在,且'(0)f A +=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程.(20)(本题满分11 分)设111A=111042--⎛⎫ ⎪- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足21A ξξ=,231A ξξ=的所有向量2ξ,3ξ. (Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ,证明1ξ,2ξ,3ξ线性无关. (21)(本题满分11 分)设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-. (Ⅰ)求二次型f 的矩阵的所有特征值.(Ⅱ)若二次型f 的规范形为2211y y +,求a 的值. (22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为0(,)0xe y xf x y -⎧<<=⎨⎩其他(Ⅰ)求条件概率密度()Y X f y x ; (Ⅱ)求条件概率11P X Y =⎡≤≤⎤⎣⎦. (23)(本题满分11分)袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X 、Y 、Z 分别表示两次取球所取得的红、黑与白球的个数. (Ⅰ)求10P X Z ⎡==⎤⎣⎦;(Ⅱ)求二维随机变量(,)X Y 的概率分布.2009年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.(1)函数3()sin x x f x xπ-=的可去间断点的个数为(A)1. (B)2. (C)3.(D)无穷多个.【答案】C. 【解析】()3sin x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则(A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-. (D )1a =-,16b =.【答案】A.【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除(B)、(C). 另外201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除(D).所以本题选(A).(3)使不等式1sin ln xtdt x t>⎰成立的x 的范围是 (A)(0,1).(B)(1,)2π. (C)(,)2ππ. (D)(,)π+∞.【答案】A.【解析】原问题可转化为求111sin sin 1()ln xx x tt f x dt x dt dt t t t =-=-⎰⎰⎰11sin 11sin 0x x t t dt dt t t --==>⎰⎰成立时x 的取值范围,由1sin 0tt->,()0,1t ∈时,知当()0,1x ∈时,()0f x >.故应选(A).(4)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)(C)(D)【答案】D.【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为(D).(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫⎪⎝⎭.(B)**23OB A O ⎛⎫⎪⎝⎭.(C)**32O A BO ⎛⎫⎪⎝⎭.(D)**23O A BO ⎛⎫⎪⎝⎭. 【答案】B.【解析】根据CC C E *=,若111,C C C CC C*--*==分块矩阵O A B O ⎛⎫⎪⎝⎭的行列式221236O A A B B O ⨯=-=⨯=(),即分块矩阵可逆 1111661O B BO A O A O A O B B O B O B O AO A O A **---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭1236132O BOB AO A O ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭故答案为(B).(6)设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则T Q AQ 为(A)210110002⎛⎫⎪ ⎪ ⎪⎝⎭.(B)110120002⎛⎫⎪⎪ ⎪⎝⎭.(C)200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭.(D)100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭.【答案】A.【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即: 12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(7)设事件A 与事件B 互不相容,则(A)()0P AB =.(B)()()()P AB P A P B =. (C)()1()P A P B =-.(D)()1P A B ⋃=.【答案】D.【解析】因为,A B 互不相容,所以()0P AB = (A)()()1()P AB P AB P A B ==-,因为()P A B 不一定等于1,所以(A)不正确.(B)当(),()P A P B 不为0时,(B)不成立,故排除. (C)只有当,A B 互为对立事件的时候才成立,故排除.(D)()()1()1P AB P AB P AB ==-=,故(D)正确.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为1{0}{1}2P Y P Y ====,记()z F Z 为随机变量Z XY =的分布函数,则函数()z F Z 的间断点个数为( ) (A) 0. (B)1. (C)2 .(D)3.【答案】 B.【解析】()()(0)(0)(1)(1)Z F z P XY z P XY z Y P Y P XY z Y P Y =≤=≤==+≤==1[(0)(1)]21[(00)(1)]2P XY z Y P XY z Y P X z Y P X z Y =≤=+≤==⋅≤=+≤=,X Y 独立1()[(0)()]2Z F z P x z P x z ∴=⋅≤+≤(1)若0z <,则1()()2Z F z z =Φ(2)当0z ≥,则1()(1())2Z F z z =+Φ0z ∴=为间断点,故选(B).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)cos 0x x →=.【答案】32e . 【解析】cos cos 10xx x x -→→=02(1cos )lim 13x e x x→-=20212lim 13x e x x →⋅=32e =. (10)设()y xz x e =+,则(1,0)zx ∂=∂ .【答案】2ln 21+. 【解析】由()xy z x e=+,故()(),01xz x x =+()''ln(1)ln(1)1ln(1)1x x x x x dz x x e e x dx x ++⎡⎤⎡⎤⎡⎤=+==++⎣⎦⎢⎥⎣⎦+⎣⎦ 代入1x =得,()ln 21,01ln 22ln 212ze x∂⎛⎫=+=+ ⎪∂⎝⎭.(11)幂级数21(1)n n nn e x n ∞=--∑的收敛半径为 . 【答案】1e. 【解析】由题意知,()210nn n e a n --=>()()()()111122122111()11111n n n n n nn n nn e e ea n n e n a n e n e e +++++⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭--⎢⎥⎣⎦=⋅=⋅→→∞⎡⎤+--+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,该幂级数的收敛半径为1e(12)设某产品的需求函数为()Q Q P =,其对应价格P 的弹性0.2p ξ=,则当需求量为10000件时,价格增加1元会使产品收益增加 元. 【答案】8000.【解析】所求即为()QP Q P Q ''=+ 因为0.2p Q PQξ'==-,所以0.2Q P Q '=- 所以()0.20.8QP Q Q Q '=-+= 将10000Q =代入有()8000QP '=.(13)设(1,1,1)T α=,(1,0,)T k β=,若矩阵Tαβ相似于300000000⎛⎫ ⎪ ⎪ ⎪⎝⎭,则k = .【答案】2.【解析】T αβ相似于300000000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,根据相似矩阵有相同的特征值,得到T αβ的特征值为 T αβ为矩阵T αβ的对角元素之和,1300k ∴+=++,2k ∴=.(14)设1X ,2X ,…,n X 为来自二项分布总体(,)B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差,记统计量2T X S =-,则ET = .【答案】2np【解析】由222()(1)ET E X S EX ES np np p np =-=-=--=.三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.【解析】2(,)2(2)0x f x y x y '=+=,2(,)2ln 10y f x y x y y '=++=,故10,x y e= =. 2212(2),2,4xxyy xyf y f x f xy y''''''=+ =+ =. 则12(0,)12(2)xxef e ''=+,1(0,)0xyef ''=,1(0,)yy ef e ''=.0xxf ''>而2()0xy xx yy f f f ''''''-< ∴二元函数存在极小值11(0,)f e e=-.(16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >.t =得22212,1(1)tdtx dx t t -= =--2221ln(1ln(1)1ln(1)11111dx t d t t dt t t t =+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以2ln(1)111ln(1ln 1412(1)1ln(1.2t t dx C t t t x C +++=+-+--+=++-⎰(17)(本题满分10 分) 计算二重积分()Dx y dxdy -⎰⎰,其中22{(,)(1)(1)2,}D x y x y y x =-+-≤≥. 【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰ 332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数()f x 在[],a b 上连续,在(),a b 上可导,则(),a b ξ∈,得证()'()()()f b f a f b a ξ-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()0,,(0)σσ>内可导,且'0lim ()x f x A +→=,则'(0)f +存在,且'(0)f A +=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足:在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'00()(0)x f x f f x ξ-=-……()*又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====-故'(0)f +存在,且'(0)f A +=.(19)(本题满分10 分)设曲线()y f x =,其中()f x 是可导函数,且()0f x >.已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的t π倍,求该曲线的方程.【解析】旋转体的体积为22()()11x x t t V f dx f dx ππ==⎰⎰曲边梯形的面积为:()1x ts f dx =⎰,则由题可知22()()()()1111x x x x t t t tV ts f dx t f dx f dx t f dx πππ=⇒=⇒=⎰⎰⎰⎰两边对t 求导可得22()()()()()()11t x t t t x t t f f dx tf f tf f dx =+⇒-=⎰⎰继续求导可得''2()()()()()f t f t f t tf t f t --=,化简可得'1(2())()2()12dt f t t f t f t t dy y-=⇒+=,解之得1223t c y y -=⋅+在式中令1t =,则2(1)(1)0,()0,(1)1f f f t f -=>∴=,代入1223t cyy -=+得11,2)33c t y =∴=.所以该曲线方程为:230y x =.(20)(本题满分11 分)设111A=111042--⎛⎫ ⎪- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足21A ξξ=,231A ξξ=的所有向量2ξ,3ξ. (Ⅱ)对(Ⅰ)中的任意向量2ξ,3ξ,证明1ξ,2ξ,3ξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-=求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭故有两个自由变量,令231,0x x =-=,由20A x =得11x = 令230,1x x ==-,由20A x =得10x =求得特解21200η⎛⎫- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭故 3231102100010k k ξ⎛⎫-⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭,其中23,k k 为任意常数(Ⅱ)证明:由于12121212122111121112(21)()2()(21)22221k k k k k k k k k k k k k -+--=+++-+-+-+102=≠故123,,ξξξ 线性无关.(21)(本题满分11 分)设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-. (Ⅰ)求二次型f 的矩阵的所有特征值.(Ⅱ)若二次型f 的规范形为2211y y +,求a 的值.【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+.(Ⅱ) 若规范形为2212y y + 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =(22)(本题满分11 分)设二维随机变量(,)X Y 的概率密度为0(,)0x e y x f x y -⎧<<=⎨⎩其他(Ⅰ)求条件概率密度()Y X f y x (Ⅱ)求条件概率11P X Y =⎡≤≤⎤⎣⎦ 【解析】(Ⅰ)由0(,)0x y xe f x y -<<⎧= ⎨⎩其它得其边缘密度函数()0xx x x f x e dy xe x --== >⎰故 |(,)1(|)0()y x x f x y f y x y x f x x== << 即 |1(|)0y x y xf y x x ⎧ 0<<⎪=⎨⎪ ⎩其它(Ⅱ)[1,1][1|1][1]P X Y P X Y P Y ≤≤≤≤=≤而111011[1,1](,)12xx x x y P X Y f x y dxdy dx e dy xe dx e ---≤≤≤≤====-⎰⎰⎰⎰⎰()|,0xxyY yf y e dx e e y y+∞---+∞==-= >⎰11101[1]|110y y P Y e dy e e e ----∴ ≤==-=-+=-⎰11122[1|1]11e e P X Y e e ----∴ ≤≤==--.(23)(本题满分11分)袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X 、Y 、Z 分别表示两次取球所取得的红、黑与白球的个数. ①求10P X Z ⎡==⎤⎣⎦.②求二维随机变量(,)X Y 的概率分布.【解析】(Ⅰ)在没有取白球的情况下取了一次红球,利用压缩样本空间则相当于只有1个红球,2个黑球放回摸两次,其中摸了一个红球12113324(10)9C P X Z C C ⨯∴====⋅.(Ⅱ)X ,Y 取值范围为0,1,2,故()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0461112,0,0,136311,1,2,10910,291,20,2,20C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ⋅⋅========⋅⋅⋅⋅========⋅⋅⋅=======⋅⋅====⋅======。
2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xyy x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(10f f f f dx x f -++≈⎰的代数精度.四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表(标有*号处不填):(2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈112)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ).八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解.九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .2008年春季学期数值数学试题一.(10分)设给实数0a >,初值00x >:⑴试建立求1a的Newton 迭代公式,要求在迭代函数中不含除法运算;⑵证明给定初值0x ,迭代收敛的充分必要条件为020x a<<;⑶该迭代的收敛速度是多少?⑷取00.1x =,计算15的近似值,要求计算迭代三次的值(结果保留5位小数)。
[考研类试卷]2009年攻读工学博士学位研究生入学考试(数值分析)真题试卷1 1)设x1=5.1074,x2=80.119均具有5位有效数字,试估计由这些数据计算x1x2具有几位有效数字; 2)利用秦九韶算法计算多项式p(x)=8x5—6x4+4x3—2x2+3x+1在x=2处的值.2 设3次代数方程x3—5x2—2x+1=0的最大实根为x*.任取x0,用Newton迭代法可得迭代序列{x k}k=0∞.证明:如果x0>x*,则有3 给定线性方程组Ax=b,其中1)写出Jacobi迭代格式;2)设A是按行严格对角占优矩阵,即A满足证明:Jacobi迭代法收敛.4 设f(x)=x4—3x3+x2—10,x0=1,x1=2,x2=3,x3=0. 1)写出f(x)以x0,x1,x2,x3为节点的3次Lagrange插值多项式L3(x); 2)写出f(x)以x0,x1,x2,x3为节点的3次Newton插值多项式N3(x); 3)给出以上插值多项式的插值余项表达式.5 求a和b,使得|e x-(a+bx)|取最小值,并求该最小值.6 给定积分取正整数M,将区间[a,b]作M等分,并记h=(b—a)/M,x i=a+ih,i=0,1,…,M.1)利用函数值f(x0),f(x1),…,f(x M)作f(x)的分段一次插值多项式S(x),给出S(x)的表达式;2)利用S(x)构造计算I(f)的数值求积公式并写成的形式,给出A i的表达式;3)设f(x)∈C2[a,b],试估计截断误差I(f)-I N(f).7 考虑常微分方程初值问题取正整数n,记h=(b-a)/n,x i=a+ih,0≤i≤n.试分析下列求解公式的局部截断误差,并指出其阶数.8 设2阶抛物方程初边值问题有光滑解u(x,t),其中φ(0)=ψ1(0),φ(1)=ψ2(0).取正整数M和N,并记h=1/M,x i=ih,0≤i≤M;τ=T/N,t k=kτ,0≤k≤N.对(A)建立一个无条件稳定且是收敛的差分格式.1)给出差分格式截断误差的表达式;2)分析差分格式的解对右端函数和初值的稳定性;3)证明差分格式的收敛性.。
数值分析试题院系,专业: 分数:姓名,学号: 日期:2004.6. 注:计算题取小数点后四位。
1. (10分)利用Gauss-Legendre 求积公式⎰-++-≈11)7746.0(5556.0)0(8889.0)7746.0(5556.0)(f f f dx x f导出求积分3()f x dx-⎰的三点高斯型求积公式。
2. (15分)写出求解线性代数方程组123121322531272x x x x x x x -+=⎧⎪-+=-⎨⎪+=⎩ 的Gauss-Seidel 迭代格式,并分析此格式的敛散性。
3.(15分)设矩阵21011000201010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎥⎥⎦, (1)试计算||||A ∞。
(2)用Householder 变换阵H 将A 相似约化为上Hessenberg 阵,即HAH 为上Hessenberg 阵。
4. (10分) 求关于点集{}1,2,3,4的正交多项式{}012(),(),()x x x ϕϕϕ。
5. (10分)用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据1.02.03.04.00.8 1.5 1.8 2.0i i x y ⎧⎨⎩ 6.(20分)给出数据点: 013419156i i x y =⎧⎨=⎩ (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算 1.5x =的近似值2(1.5)L 。
(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算 1.5x =的近似值2(1.5)N 。
(3)用事后误差估计方法估计2(1.5)L 、2(1.5)N 的误差。
7.(10分) 设矩阵A 可逆,A δ为A 的误差矩阵,证明:当11A A δ-<时, A A δ+也可逆。
8.(10分)设()f x 四阶连续可导,0,0,1,2.i x x ih i =+=试建立如下数值微分公式 ''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。
2009年春季工学硕士研究生学位课程(数值分析)真题试卷
(总分:28.00,做题时间:90分钟)
一、填空题(总题数:6,分数:12.00)
1.填空题请完成下列各题,在各题的空处填入恰当的答案。
(分数:
2.00)
__________________________________________________________________________________________ 解析:
2.已知x=0.045,y=2.013_____
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:0.902×10 -4)
解析:
3.已知矩阵1 =______,‖A‖ 2 =______.
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
4.设函数f(x)=2x 3 -x+1,则f(x)以x 0 =-1,x 1 =0,x 2 =1为插值节点的二次插值多项式为______.(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:x+1)
解析:
5.设函数f(x)∈C 2 [x 0 -h,x 0 +h],h>0,则
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
6.______,该公式的代数精度为_____.
(分数:2.00)
__________________________________________________________________________________________
正确答案:()
解析:
二、计算题(总题数:2,分数:4.00)
7.(0,+∞)内实根的分布情况,并用迭代法求出该方程在(0,+∞)内的全部实根,精确至3位有效数字.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:设,显然f(x)=0在(2,+∞)内无根.在(0,2]内,f"(x)=cosx-
,当时,f"(x)=0.又注意到f(0)=0,故在内,f"(x)>0,函数单凋递增,f(0)=0,
因此方程无根;在内,f"(x)<0,函数单调递减,f(2)<0,有唯一根.所以方程sinx-
=0在(0,+∞)内有唯一根x *∈ 求解该方程的Newton迭代格式为x k+1 =x k k=0,1,2…)解析:
8.给定方程组Ax=b,其中x,b∈R 3,ω∈R.试确定ω的取值范围,使求解该方程组的Jacobi 迭代格式和Gauss—Seidel迭代格式都收敛.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代矩阵的特征方程为即λ3—4ω2λ=0,求得λ1=0,λ2=2ω,λ3=-2ω,当且仅当|2ω|<1,即|ω|<时,Jacobi格式收敛.Gauss—Seidel迭代格式迭
代矩阵的特征方程为即λ3—4λ2ω2 =0,求得λ1,2 =0,λ3 =4ω<)
解析:
三、综合题(总题数:6,分数:12.00)
9.已知函数f(x)在区间[x 0,x 2 ]上有定义,且x 1f(x)的三次插值多项式p(x),使之满足p(x 0 )=f(x 0 ),p"(x 1 )=0,p"(x 1 )=0,p(x 2 )=f(x 2 ).
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:方法1:由于p"(x 1)=0,P"(x 1)=0,可设p"(x)=A(x—x 1) 2,两边积分得p(x)=
(x—x 0 ) 3 +B.由p(x 0 )=f(x 0 )得(x 0 -x 1 ) 3 +B=f(x 0 ),由p(x 2 )=f(x )
解析:
10.求函数[0,1]上的一次最佳平方逼近多项式P 1 (x)=a+bx.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:设φ0 (x)=1,φ1 (x)=x,则(φ0 ,φ0)=∫ 01 1dx,(φ0 ,φ1)=∫ 01 xdx=
,(φ1 ,φ1)=∫ 01 x 2,(φ0 ,f)=)
解析:
11.已知函数f(x)∈C 4 [-a,a],I(f)= . 1)试确定求积公式=A 0 f(-a)+A 1 f(0)+A 2 f(a)中的参数A 0,A 1,A 2,使的代数精度达到最高,并指出此时该求积公式的代数精度次数; 2)
求I(f)- 形如的截断误差表达式.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:1)由代数精度定义有求得当f(x)=x 3时,有当f(x)=x 4时,
有故该公式有3次代数精度. 2)以H(-a)=f(-a),H(0)=f(0),H(a)=f(a),H"(0)=f"(0)为插值条
件作3次插值多项式H(x),则有f(x)-H(x)= (x+a)(x-a)x 2,而=A 0H(-a)+A 1H(0)+A 2H(a)=
,且)
解析:
12.给定常微分方程初值问题取n为整数;x i=a+ih,1≤i≤n.记y i≈y(x i),1≤i≤n;y 0 =y(a). 1)求参数α,使求解上述初值问题的数值求解公式y i +1=y i +h[αf(x i,y i )+(1-α)f(x i+1,y i+1 )]局部截断误差阶达到最高; 2)应用Euler公式与1)中求得的公式构造预测-校正公式,并求出该预测-校正公式的局部截断误差表达式.
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:1)局部截断误差R i+1 =y(x i+1 )-y(x i )-h[αf(x i,y(x i ))+(1-α)f(x i+1,
y(x i+1 ))]=y(x i )+hy"(x i )+ y"(x i y""(x i )+O(h 4 )-y(x i )[*)
解析:
13.对于定解问题取正整数M,N,令x i=ih,i=0,1,…,M; t k=kt,k=0,1,…,N 1)构造求解该初边值问题的隐式差分格式,并给出其截断误差表达式; 2)取应用1)中构造的求解公式
计算以及的近似值
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:1)在节点(x i,t k )处考虑微分方程由Taylor展开得x i-1<ξi <x i+1将上面两式代入方程得略去截断误差并令u i k≈u(x i,t k)得2)取
要求的即为第一层的近似值.由差分格式整理得(1+2γ-τ)u i k)
解析:
14.已知A,B∈R n×n,其中A非奇异,B为奇异矩阵,试证明
(分数:2.00)
__________________________________________________________________________________________ 正确答案:(正确答案:因B是奇异阵,A非奇异,则A -1B奇异,故必存在x∈R n且x≠0使A -1Bx=0.因此(I-A -1B)x=x.两边取范数得‖x‖=‖(I—A -1B)x‖≤‖(I—A -1B)‖.‖x‖.因为‖x‖≠0,所以‖I-A -1B)‖≥1,从而有1≤‖I—A -1B)‖=‖A -1 (A—B)‖≤‖(A—B)‖.‖A -)
解析:。