3[1].2+矩形薄板单元
- 格式:pdf
- 大小:133.46 KB
- 文档页数:6
(范文素材和资料部分来自网络,供参考。
可复制、编制, 期待你的好评与关注)弹力小结矩形薄板的几种解法矩形薄板的几种解法•:纳维解法四边简支的矩形薄板,如图,当并无支座沉陷时,其边界条件为O二 0_ay 厂O二 0-0.纳维把挠度'的表达式取为如下的重三角级数:为了求出系数A mn ,须将式b )右边的q 展为与左边同样的重三角级数即q"4D 芸M C mn sin ^sin 也。
m ± n a b血x现在来求出式((中的系数C mn 。
将式C )左右两边都乘以n ,其中的a为任意正整数,然后对x 积分,从0到a ,注意=ox _0n ::A mn m 土 n 三sinsinab(a )其中m 和n 都是任意正整数。
弹性曲面微分方显然,上列的边界条件都能满足。
将式 代入 程::n m 2 n 2冲% Fl ,得讥注!^+尹 sin 叱 sin n y =q 。
( b )a b到(C )Aya sin .0sin Adx a (m 护 i) (m = 4) 就得到 q sin ^Zdxa 再将此式的左右两边都艰以 土,其中的j 也是任意正整数,然后对积分, 从o 到b ,注意b f s Jo 就得到 sin ! Isin a ab -r C j因为i 和j 式任意正整数,可以分别换为m 和n ,所以上式可以换写为 b q sin abC 4 mn解出C mn ,代入式(),得到q 的展式 . m^x . njry q =才瓦送 f [qsin^sin bdxdy 分m 亠n 亠] U与式(b )頑匕,即得 m -1 ■ n -1- sin 叱 sin 口 a b ° (13-25) Amn4a 4 0bq sin4二 abDsin n Ldxdy abm 2. n 2~2当薄板受均布荷载时,q 成为常量q o ,式(d )积分式成为q 0 sinsin:a=q 0q 0 sinam •:; x dx adxdy bb . n 二 y sin dy 0 bq 0 ab2 ------■:\ mn一 cos m 「jj 1 - cos n 丄 于是由式d )得到 Amn 1 - cos n ■:!;4 q 0 1 一 cos m 尹 —y—-J 二6D mn A mn 16 q 0・ 2 2 I m_ . nJ 厂 .2 >,- b。
薄板弯曲问题的有限元法一、 薄板弯曲问题的基本方程什么是薄板?薄板就是指厚度t 远小于其长度、宽度的板。
1. 三个基本假设(克希霍夫假设): (1) 法线假设,εz =0,γyz =γzx =0 (2) 正应力假设,σz <<σx ,σy ,τxy (3) 小挠度假设,w<t/4根据假设,可以得到位移分量()()()()()(),,,,,,,,,,, x y z u x y z z x x y z v x y z z y x y z x y ωωωω∂⎧=-⎪∂⎪∂⎪=-⎨∂⎪⎪=⎪⎩式4-1图 1 薄板弯曲后某点B 的位移2. 应变分量{}222222x y z x z y x y ωεωεεεω⎧⎫∂-⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪⎪⎪==-⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂-⎪⎪∂∂⎪⎪⎩⎭式4-23. 曲率{}222222x y z x y x y ωχωχχχω⎧⎫∂-⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪⎪⎪==-⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂-⎪⎪∂∂⎪⎪⎩⎭式4-3 22=x x ωχ∂-∂——薄板弹性曲面在x 方向的曲率22=y yωχ∂-∂——薄板弹性曲面在y 方向的曲率2=z x yωχ∂-∂∂——薄板弹性曲面在x 方向和y 方向的扭率4. 应力分量与应变分量间的关系:{}[]{}2222222222221 11D Ez xy Ez x y Ez x y σεωωμμωωμμωμ=⎧⎫⎛⎫∂∂-+⎪⎪ ⎪-∂∂⎝⎭⎪⎪⎪⎪⎛⎫∂∂⎪⎪=-+⎨⎬ ⎪-∂∂⎝⎭⎪⎪⎪⎪∂⎪⎪--∂∂⎪⎪⎩⎭式4-4 5. 线力矩{}()2222222101012110022x y z x M Et M M y M x y ωμωμμμω⎧⎫∂-⎪⎪⎡⎤∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪==-⎨⎬⎨⎬⎢⎥∂-⎪⎪⎪⎪⎢⎥-⎩⎭⎪⎪⎢⎥∂⎣⎦-⎪⎪∂∂⎪⎪⎩⎭式4-5a广义应力与广义应变之间的关系式{}[]{}D M χ= 式4-5b式中:[D]—薄板弯曲问题的弹性矩阵6. 薄板弯曲问题的基本方程(双调和方程)()32222222121Et p xx y y ωωωμ⎛⎫∂∂∂++= ⎪∂∂∂∂-⎝⎭ 式4-6()32121Et μ-——薄板弯曲刚度 二、 矩形薄板单元分析 1、矩形薄板单元图 2 矩形薄板单元2、位移函数22123456322333789101112 a a x a y a x a xy a y a x a x y a xy a y a x y a xy ω=+++++++++++ 式4-73、形状函数[]{}k i i xi xi yi yi j j xj xj yj yj k kxk xk yk y l l xl xl yl yl N N N N N N N N N N N N N q ωωθθωθθωθθωθθ=+++++++++++= 式4-8式中:i,j,k,l ——节点号N i ,N xi ,N yi ,……,N yl ——形状函数()()()()()()()()()()2211128N 111 ,,,8111 8y i i i i i xi i i iyi i i i b N i i j h l N a x a b ξξηηξξηηξηηξξηηηξξξηηξξη⎧⎫++++--⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪=-++-=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪++-⎪⎪⎩⎭==, 式4-94、单元刚阵[][][][]S K TB D B dxdy =⎰ 式4-10式中:[]22222222222222222222 2222yi yl i xiyi yl ixi yi yl i xi N N N N x x x x N N NN B y y y y N N N N x yx yx yx y ⎡⎤∂∂∂∂⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂=⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦式4-11 5、节点力与节点位移的关系式{}[]{}F K q = 式4-12三、 三角形薄板单元分析1、三角形薄板单元当薄板具有斜交边界或曲线边界时,可采用三角形单元较好地反映边界形状。
第七章板的弯曲工程结构中常应用较多的平板构件,如楼房的地板、桥面、箱型结构的板件等。
在线弹性分析范畴内,薄板弯曲问题应满足以下几个条件。
1.几何条件几何条件要求结构属于薄板。
工程中将厚度尺寸小于其他两个方面尺寸的结构称为板,平分板厚度的面称为板的中面,平板的中面为平面。
设t表示板的厚度,l表示板中面的最小边长(圆板为直径)。
在通常的计算精度要求下,当15tl时则认为板为薄板。
否则便认为是厚板,厚板的变形和应力较复杂,应按空间问题进行处理。
2.载荷条件载荷条件要求结构仅承受垂直于中面的横向载荷作用。
一般情况下,薄板即可承受横向载荷作用,也可承受平行于板中面的膜载荷作用。
在两种载荷作用下,板内将产生薄膜应力和弯曲应力。
前者是作用在中面内拉、压力和面内切力(剪力),它使板产生面内变形。
后者是指弯矩、扭矩和横向剪力,它使板发生弯扭变形。
在小挠度情况下可认为两种变形互不影响,因此膜载荷的作用可按平面问题进行处理,而横向载荷的作用则按薄板弯曲问题来分析,两种问题的叠加便是一般载荷综合作用的结果。
3.小挠度条件在横向载荷作用下,薄板中面上各个点沿垂直中面方向 的横向变形成为挠度,记为ω。
大挠度与小挠度之间没有显著的界限,一般认为15t ω≤时为小挠度板,15tω<<时为大挠度板,5tω≥时为特大挠度板。
在大挠度的情况下,薄板面内变形和弯曲变形之间要相互影响,及横向载荷也可能产生膜内力和面内变形,而膜载荷也可能产生弯曲内力和弯曲变形。
这时描述薄板变形的数学方程是非线性的,应采用更为复杂的理论分析方法。
第一节 薄板弯曲弹性力学基础在受到垂直于板面的载荷后,薄板将会产生弯曲。
对于薄板弯曲问题,研究时一般以未变形的板的中面为xoy 平面,厚度方向为z 轴方向。
一、克希霍夫(Kirchhoff )假设分析薄板弯曲问题时,采用克希霍夫(Kirchhoff )假设:(1)法线假设在变形前,垂直于中面的法线,在变形后仍垂直于薄板弯曲了的中面,且法线线段没有伸缩,板的厚度没有变化。
(范文素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)弹力小结矩形薄板的几种解法矩形薄板的几种解法一:纳维解法四边简支的矩形薄板,如图,当并无支座沉陷时,其边界条件为()00x ω==, 2200x x ω=⎛⎫∂= ⎪∂⎝⎭。
()0x aω==, 220x ax ω=⎛⎫∂= ⎪∂⎝⎭。
()0y ω==,220y y ω=⎛⎫∂= ⎪∂⎝⎭。
纳维把挠度ω的表达式取为如下的重三角级数:11sinsin nmn m n m x n yA a bππω∞===∑∑,(a )其中m 和n 都是任意正整数。
显然,上列的边界条件都能满足。
将式(a )代入弹性曲面微分方程,得到为了求出系数mn A ,须将式(b )右边的q 展为与左边同样的重三角级数即411sinsinnmn m n m x n y q D C a bπππ∞===∑∑。
(c ) 现在来求出式(c )中的系数mn C 。
将式(c )左右两边都乘以sin i xaπ,其中的i 为任意正整数,然后对x 积分,从0到a ,注意()0y bω==220y by ω=⎛⎫∂= ⎪∂⎝⎭22242211sin sin b nm n m n m x n yD q ab a b πππ∞==⎛⎫+= ⎪⎝⎭∑∑。
()ysinsin am x i ydx a aππ=⎰就得到1sinsin2ainn i y an yq dx Ca bππ∞==∑⎰。
再将此式的左右两边都乘以sin j x aπ,其中的j 也是任意正整数,然后对y 积分,从0到b ,注意s i n s i n bon y j y dy b bππ=⎰就得到因为i 和j 式任意正整数,可以分别换为m 和n ,所以上式可以换写为sinsin 4a bmnm x n y abq dxdy C a b ππ=⎰⎰解出mn C ,代入式(c ),得到q 的展式。
(13-25)与式(b )对比,即得当薄板受均布荷载时,q 成为常量0q ,式(d )积分式成为()()00000002sinsin =q sin sin 1cos 1cos a ba b m x n y q dxdy a bm x n yq dx dya b q ab m n mnπππππππ=--⎰⎰⎰⎰于是由式(d )得到()()022262241cos 1cos mn mn q m n A m n D ab πππ--=⎛⎫+ ⎪⎝⎭或()222622161,3,5,;1,3,5,mn mnq A m n m n D ab π===⎛⎫+ ⎪⎝⎭。
高等有限元法智慧树知到课后章节答案2023年下长安大学长安大学第一章测试1.有限元各单元是通过什么连接在一起的()。
答案:相邻节点2.有限元分析中通常用什么作为未知量来进行求解()。
答案:节点位移3.第一次提出并使用“有限元方法”的名称时间是()。
答案:1960年4.结构整体刚度矩阵是一个奇异矩阵,不能求逆矩阵。
()答案:对5.建立单元刚度矩阵可利用虚位移原理或最小势能原理。
()答案:对第二章测试1.有关形状函数的说法,下列哪些是正确的?()答案:单元上所有节点的形函数之和等于1;形状函数矩阵本质是内插函数矩阵,实现了有限单元法在数学模型上的离散化;Ni在节点i等于1,在其它点等于0;形状函数矩阵建立了单元内位移与单元结点位移之间的相互关系2.有限元法中,单元分析的目的主要是为了()。
答案:计算单元刚度矩阵3.局部坐标系下,若一杆单元的刚度矩阵为,则材料相同,杆长为其两倍的杆单元的刚度矩阵是()答案:4.平面自由式梁单元的单元刚度矩阵大小是()。
答案:6×65.如果单元上作用有分布弯矩,在计算等效结点集中载荷时,所采用的形状函数矩阵为()。
答案:转角的内插函数矩阵第三章测试1.十节点三角形单元位移函数中包含有多少个待定系数()。
答案:20个2.为了使位移解答收敛,位移函数应该满足下面哪些准则()。
答案:多项式位移函数中包含常数项;位移函数应反映单元的常应变;位移函数必须保证在相邻单元在接触面上的应变是有限的;位移函数中须含有反映刚体运动的项数3.在插值函数多项式的阶次时,必须考虑下列因素是()。
答案:多项式描述的位移形式与局部坐标系无关;a i的数目应等于单元结点自由度的数目;在不同局部坐标系中位移函数表达式满足几何等向性;插值多项式应当尽可能满足收敛性要求4.有限元的基本思想是分段逼近。
()答案:对5.用多项式形式的插值函数来建立和计算有限元方程比较容易,特别是易于积分和微分()答案:对第四章测试1.有一向下作用的集中力p作用在常应变三角形单元ijm的节点i处,则()。
弹力小结矩形薄板的几种解法矩形薄板的几种解法一:纳维解法四边简支的矩形薄板,如图,当并无支座沉陷时,其边界条件为()00x ω==, 2200x x ω=⎛⎫∂= ⎪∂⎝⎭。
()0x aω==, 220x ax ω=⎛⎫∂= ⎪∂⎝⎭。
()0y ω==, 2200y y ω=⎛⎫∂= ⎪∂⎝⎭。
纳维把挠度ω的表达式取为如下的重三角级数:11sinsin nmn m n m x n yA a bππω∞===∑∑, (a )其中m 和n 都是任意正整数。
显然,上列的边界条件都能满足。
将式(a )代入弹性曲面微分方程 ,得到为了求出系数mn A ,须将式(b )右边的q 展为与左边同样的重三角级数即411sinsinnmn m n m x n y q D C a bπππ∞===∑∑。
(c ) 现在来求出式(c )中的系数mn C 。
将式(c )左右两边都乘以sin i xaπ,其中的i 为任意正整数,然后对x 积分,从0到a ,注意sinsin am x i ydx a aππ=⎰,, 就得到1sinsin2ainn i y an yq dx Ca bππ∞==∑⎰。
()0y bω==220y by ω=⎛⎫∂= ⎪∂⎝⎭22242211sin sin b nm n m n m x n y D q a b a bπππ∞==⎛⎫+= ⎪⎝⎭∑∑。
()y再将此式的左右两边都乘以sin j x aπ,其中的j 也是任意正整数,然后对y 积分,从0到b ,注意sin sin bon y j y dy b b ππ=⎰,jb , j就得到因为i 和j 式任意正整数,可以分别换为m 和n ,所以上式可以换写为sinsin 4a bmnm x n y abq dxdy C a b ππ=⎰⎰解出mn C ,代入式(c ),得到q 的展式。
(13-25)与式(b )对比,即得当薄板受均布荷载时,q 成为常量0q ,式(d )积分式成为()()000000002sinsin =q sin sin 1cos 1cos a ba b m x n y q dxdya bm x n yq dx dya b q ab m n mnπππππππ=--⎰⎰⎰⎰于是由式(d )得到()()022262241cos 1cos mn mnq m n A m n D ab πππ--=⎛⎫+ ⎪⎝⎭或()222622161,3,5,;1,3,5,mn mnq A m n m n D ab π===⎛⎫+ ⎪⎝⎭。