变矩器的分类
- 格式:doc
- 大小:35.50 KB
- 文档页数:9
10.4 液力变矩器的分类及结构型式10.4.1液力变矩器的分类液力变矩器大致可分为下列几类:1、把装在泵轮与导轮或导轮与导轮之间刚性连接在同一根输出轴上的涡轮数目称为“级”。
按级数多少来分,有单级、多级的液力变矩器;2、把液力变矩器中利用单向离合器或者其他机构的作用来改变参与工作的各工作轮的工作状态的数目,称为“相”。
液力变矩器有单相及多相之分;3、按液流在循环圆中流动时流过涡轮的方向分:离心式、向心式及轴流式涡轮液力变矩器;4、按在牵引工况时,涡轮轴与泵轮转向相同与否,分作正转和反转液力变矩器;5、根据液力变矩器能容是否可调,分为可调与不可调液力变矩器;6、把液力变矩器与机械传动组合而成的变矩器叫做液力机械变矩器。
根据功率分流不同,又分为内分流和外分流的液力机械变矩器。
10.4.2液力变矩器的结构及特性1、单级单相液力变矩器罩轮4通过弹性连接板3与发动机飞轮连接起来,这样发动机就可带动泵轮1转动。
涡轮5通过涡轮套6与空心轴11相连,涡轮的动力由空心轴11对外输出。
导轮8通过导轮座12与机座9固定在一起不能转动。
油泵轴10活动地装在涡轮空心轴11内,轴的左端用花键、油泵驱动盘7、罩轮4等与发动机飞轮相连,右端有齿轮用来驱动液压泵工作。
这种液力变矩器的值一般为3~4,最高效率0.85~0.90。
图10-10 YB355-2型向心涡轮液力变矩器1-泵轮2-外罩3-弹性连接板4-罩轮5-涡轮6-涡轮套7- 油泵驱动盘8-导轮9-机座10-油泵轴11-涡轮空心轴12-导轮座13-油封14-泵轮套图10-11 YB355-2型液力变矩器原始特性线2、单级双相综合式液力变矩器单级双相综合式液力变矩器的结构和单级单相液力变矩器结构大体上相同,不同点是单级双相综合式液力变矩器的导轮是通过单向离合器而与机架连接,不是直接与机架固定为一体。
图10-14 是单级双相综合式液力变矩器的结构简图及其原始特性。
当(对应于)范围内,导轮被离合器楔住,不会转动,是变矩工况;()后,导轮受力与变矩工况时受力相反,离合器松开,导轮能够转动,变矩器工作在偶合工况。
第7章 电控自动变速器目前在汽车上广泛使用的是电子控制自动变速器,其电子控制系统根据汽车行车条件和驾车应图进行自功换档和控制,并通过对变速器液压控制及变矩器锁止控制,以提高汽车的经济性、动力性和舒适性。
7.1 概 述7.1.1 自动变速器的类型在自动变速器的发展过程中出现了多种结构形式。
自动变速器的驱动方式、挡位数、变速齿轮的结构形式、变矩器的结构类型及换挡控制形式等都有不同之处。
1 按汽车驱动方式分类自动变速器按照汽车驱动方式的不同,可分为前轮驱动自动变速器(如图7-1)和后轮驱动自变速器(如图7-2)所示两种。
后轮驱动自动变速器的变矩器和行星齿轮机构的输入轴及输出轴在同一轴线上,因此轴向尺寸较大,阀体总成则布置在行星齿轮机构下方的油底壳内。
图7-1 前轮驱动自动变速器 图7-2 后轮驱动自动变速器 前轮驱动自动变速器(又叫自动变速驱动桥)除了具有与后轮驱动自动变速器相同的组成外,在自动变边器的壳件内还装有差速器和主减速器。
前轮驱动汽车的发动机有纵置和横置两种。
纵置发动机的前轮驱动自动变速器的结构和布置与后轮驱动自动变速器汽车基本相同,只是在后端增加了一个差速器。
横置发动机的刚驱动自动变速器由于汽车横向尺寸的限制,要求有较小的轴向尺寸,因此通常将输入轴和输出轴设计成两个轴线的方式。
变矩器和行星齿轮机构输入轴布置在上方,输出轴则布置在下方,这样的布置减少了变速器总体的轴向尺寸,但增加了变速器的高度,因此可将阀体总成布置在变速器的侧面或上方,以保证汽车有足够的最小离地间隙。
2 按自动变速器前进挡位数分类自动变速器按前进档的挡数的不同,可分为2(前进)档自动变速器、3档自动变速器、4档自动变速器等。
早期的自动变速器通常为2个前进挡或3个前进挡。
这两种自动变速器都没有超速档,其最高档为直接挡。
现代轿车装用的自动变速器基本上都是4个前进挡,即设有超速挡。
这种设计虽然使自动变速器的构造更加复杂,但由于设有超速档,大大改善了汽车的燃油经济性。
汽车电子控制复习思考题1.试述汽车电控装置的基本构成、要求及特点。
?分类?2.试述控制理论在汽车控制系统中的应用。
3.试述发动机主要控制目标和控制内容。
(系统)4.燃油喷射系统有何优点?①提高发动机输出功率和转矩②降低燃油消耗③减少排放污染④改善使用性能5.按喷射部位的不同,电控汽油喷射系统可分成几类?6.按检测进气量的方式不同,电控汽油喷射系统可分成几类?7.画框图说明典型电控汽油喷射系统的组成。
8.简述电控燃油喷射系统的工作原理。
9.简述典型汽油喷射系统的结构和工作原理。
10.空气供给系统主要由哪些组成?11.燃油供给系统主要由哪些组成?12.常用的空气流量计有哪些类型?各有何特点?13.微机控制电子点火控制系统由哪些部分组成?14.爆燃是怎样产生的?怎么检测?如何控制?15.废气再循环有什么作用?简要介绍EGR系统的组成部分。
16.简述三元催化反应装置的作用?怎样才能保证它的净化效果?17.排气净化控制装置的作用是什么?有哪些措施?18.用氧传感器构成闭环控制的目的是什么?哪些情况又不能使用闭环控制?目的是精确测量尾气中的氧浓度,进而控制空燃比在最佳范围。
在非理论空燃比工况下只能使用开环控制:怠速运转,节气门全开、大负荷,减速断油发动机启动,发动机冷却水温度低,氧传感器温度未达到工作温度,氧传感器失效或其线路出现故障。
19.简述废气涡轮增压控制的要点。
20.简述活性炭罐的工作原理。
21.曲轴箱通风系统分为哪几类?简要介绍各自的工作原理。
22.试述对柴油电控喷射系统的要求。
23.简述柴油电控喷射系统的控制功能。
24.简述柴油电控喷射系统的基本形式和特点。
25.简述电控储压式(共轨式)喷油系统的组成、特点和工作原理。
√26.简述电控汽油喷射系统维修注意事项。
27.自动变速器有哪些类型?有哪些优点?28.电子控制自动变速器由哪儿部分组成?其特点是什么?29.带闭锁离合器的二元件液力变矩器的工作原理及性能特性。
一、填空题1.自动变速器主要由液力变矩器、行星齿轮变速机构、换挡操纵机构等组成。
2.传统的液力自动变速器根据汽车的行驶速度和节气门开度的变化,自动变换档位。
3.自动变速器的液压供给系统属于低压系统,其工作油压通常不超过2MPa,所以应用最广泛的是齿轮泵。
4.自动变速器中常见的液压油泵有内啮合式齿轮油泵、转子式油泵、叶片式油泵。
5.转子式油泵是齿轮式油泵的变形,主要由内转子、外转子、泵壳、泵盖等组成。
6.根据在系统中的用途不同,液压控制阀可分为压力控制阀、方向控制阀、流量控制阀和比例控制阀四大类。
7.液压控制阀中常见的方向控制阀有单向阀和换向阀。
8.液压油从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流,称为涡流。
油液在泵轮转动时,被其带动沿围绕发动机曲轴和变速器输入轴轴线的环形路径的圆流动,称为环流。
9.液力变矩器主要由泵轮、涡轮、导轮等组成。
10.为了进一步扩大液力变矩器的高效率范围,可采用双导轮的液力变矩器。
11.行星齿轮机构一般由太阳轮、行星齿轮、行星架、齿圈四个基本构件组成。
12.双排辛普森式行星齿轮变速器通常具有四个独立元件,分别是前排齿轮、前后太阳轮组件、后排行星架、前行星架和后齿圈。
13.拉维纳行星齿轮机构的主要组成有大太阳轮、小太阳轮、长行星轮、短行星轮、内齿圈等元件。
14.自动变速器系统中的换挡执行元件包括离合器、制动器、单向离合器等。
15.液压控制换挡系统的控制机构主要包括液压控制系统、换挡信号系统、换挡阀组和缓冲安全系统系统。
16.副调节阀的作用是根据节气门开度和汽车行驶车速变化,调节送至变矩器和润滑系统的油压,使之与发动机功率和车速保持一致。
17.电子控制自动变速器的输入装置包括输入装置、电子控制单元和输出装置三部分组成。
18.电子控制自动变速器的执行装置,主要是电磁阀。
19.模式开关一般有两个换挡模式供选择动力模式和常规模式。
20. 10.当点火开关处于起动位置,空挡起动开关只有在P或N档时,起动机的控制线路才能接通,发动机才能起动。
变矩器的分类
1.按涡轮数量分
按涡轮数量分为单级、二级、三级涡轮变矩器
2.按轴面液流在涡轮中的流动方向分为离心涡轮变矩器、轴流涡轮变矩器、向心涡轮变矩器
3.按牵引工矿时涡轮相对于泵轮的转动方向分为正转变矩器(B-T-D变矩器),相反叫反转变矩器(B-D-T变矩器)
4.按变矩器能量是否可调分为可调变矩器和不可调变矩器
5.按能否实现耦合工况分为综合式变矩器(在耦合工况之后,导轮开始转动,变矩器变成耦合器),普通型变矩器(导轮始终固定不变)
6.按相分为单相与多相变矩器(相是变矩器所具有几种不同工作状态的数目)
变矩器的结构
无轨设备绝大部分采用美国克拉克公司的三元件单机单相向心涡轮液力变矩器
液力变矩器的选择
由于正转液力变矩器较反转的高,单级单相三元件结构最简单,向心涡轮液力变矩器较离心与轴流液力变矩器具有最高的效率,在耦合工况时效率最高。
向心涡轮变矩器并不降低机器的实际动力和加速性能。
正因为如此,所以地下装载机绝大部分选用单机单相三元件向心涡轮液力变矩器
美国克拉克公司生产的变矩器就是这种变矩器,这种变矩器性能稳定,可靠性高,使用寿命长,因而在国内外地下无轨设备中被广泛使用。
克拉克公司共生产7个系列:C2000,C270,C320,C5000,C8000,C9000,C16 000,公约61种变矩器
表示方法:
CL-27XX或X—X
C—变矩器
L---锁定
27---变矩器系列
XX或X----叶轮尺寸
1-11.00,279.4mm
2-12.00,2.1-12.002.3-12.00,2.5-12.00,304.8m m
3-13.00,3.1-13.00,3.3-13.00,3.4-13.00,3.5-13. 00,330.2mm
X----专用型号
克拉克变矩器的结构性能特点
1.克拉克变矩器有61中结构设计,因而具有61种不同的变矩比可以满足大多数发动机的要求
2.克拉克变矩器与克拉克变速箱配合使用可以在任何用途中保证达到最高效率
3.所有克拉克变矩器都与3个油泵驱动装置,油泵的驱动是通过浮动内花键传动的
4.有贯通轴与偏置轴两种形式。
克拉克变矩器所有的变矩器都可以得到贯通轴与偏置轴输出,从而挑选出最合适的安装长度与角度。
变矩器输出轴偏离中心一定距离并可3600回转,从而能选择最佳的传动轴安装角度与长度。
从方便传动系统配置出发,地下无轨设备一般采用偏置轴输出结
构,只有当无轨设备由于电机输出中心离电机座安装距离较小时,才采用贯通轴输出,而且都与变速箱制成一体即所谓的MHR型变速箱。
5.有闭锁变矩器和没有闭锁变矩器之分。
变矩器加上闭锁装置就可以是传动既可以是液力传动又可以是机械传动。
在作业或通过困难路面时采用液力传动,充分发挥液力传动自动适应阻力变化的优点。
而在良好的路面或带负荷长距离行驶时则采用机械传动,以充分发挥机械传动效率高的优点,提高行驶速度,变矩器闭锁装置的选择,由于地下无轨设备运距不大,一般不超过400米,且路面状态极差,行驶速度也不高,因此它一般不选用带闭锁装置的变矩器。
变矩器与发动机的动力传递有两种形式,一是内齿圈结构,内齿圈是纤维齿轮,用螺栓固定在发动机飞轮上,外齿圈与百年举起的泵轮连接在一起,从而通过这对齿轮把动力从发动机传递给变矩器。
另一种是柔性连
接,是通过一组柔性盘完成动力传递的。
前一种结构在过去很通用,但由于故障率高,加工时对人们身体健康及周围环境有很大的影响,现在已经不使用。
柔性连接与齿圈联接结构上有很大不同,发动机飞轮壳与变矩器连接部分也有很大的不同,不能直接互换,柔性盘连接可靠,结构简单,故障率低,寿命长。
变矩器常见故障分析与排除
液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等。
1.发动机无负载时变矩器输出压力低于0.172MPa,
原因:密封件和O型圈损坏;油泵损坏;安全阀卡死,进油管或滤油网堵塞,油管泄漏或堵塞;;
如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏
油,应予以排除。
若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。
如果压力阀正常,应拆下油管或滤网进行检查。
如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。
如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。
2.发动机无负载时变矩器输出压力高于0.492MPa,
原因:油冷却器油管堵塞;油质比重大;油温低
3.变矩器过热
原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮
机构化机构缺少零件。
液力变矩器过热故障的诊断和排除方法如下:出现变矩器过热时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,若冷却系正常,则应检查变矩器油位是否位于油尺两标记之间。
若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。
如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。
如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。
若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。
若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。
4、变矩器漏油
变矩器漏油主要是由于变矩器后盖与泵轮拼命面、泵轮与轮毂拼命处连接螺栓松动或密封件老化或损坏造成的。
发现漏油应启动发动机,检查漏油部位。
如果从变矩器与发动机的连接处漏油,说明泵轮与泵轮罩连接螺栓松动或密封圈老化,应紧固连接螺栓或更换O形密封圈;如果从变矩器与变速器连接处甩油,说明泵轮与泵轮毂连接螺栓松动或密封圈损坏,应紧固螺栓或检查密封圈;如果漏油部位在加油口或放油口位置,应检查螺栓连接的松紧度以及是否有裂纹等。
5、机器行驶速度不定期低或行驶无力
这种故障主要是由以下几种原因引起的:液力变矩器内部密封件损坏,使工作腔液流冲击下降;自由轮机构卡死,造成导轮闭锁;自由轮磨损失效;工作轮叶片损坏;进、出口压力阀损坏;液压泵磨损,供油不足;液压油油位太低;变速器的磨擦式主离合器有故障。
机器挂挡起步后,如果行驶无力或行
驶缓慢,应首先检查挂挡压力表的指示压力是否在正常范围内,如果压力过低应予以排除;如果压力正常,则可能是自由轮磨损失效或工作轮叶片损坏;还可能是变速器磨擦式离合器存在故障,应进行具体分析并予以排除。
6、液力变矩器工作时有异常响声
这种故障主要是由于轴承或损坏,工作轮连接松动或与发动机连接松动等原因造成的。
出现这种情况,应首先检查各连接产部位是否松动,然后检查各轴承,如有松旷应进行调整或更换新轴承。
此外,还应检查液压油的油量和质量,必要时添加或更换新油
变矩器正常工作压力为240—280psi。
Psi 是一种压力单位,定义为英镑/平方英寸,145psi=1Mpa。