第四章语音信号的短时频域分析
- 格式:ppt
- 大小:3.04 MB
- 文档页数:52
实验二:语音信号的频域分析实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。
实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。
要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。
实验内容:1、 语音信号的频谱分析1.1加载“ma1_1”语音数据。
基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。
load ma1_1;x = ma1_1 (4161:4460); plot (x)N = 1024; k = - N/2:N/2-1;X = fftshift (fft (x.*hann (length (x)),N));plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。
问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别?问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期?问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度?1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱:∏==R r r X HPSx 1)()(ωω式中,R 一般取为5。
在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。
1.3加载“vowels.mat”语音数据,分别画出一帧/i/和一帧/u/(采样频率为10kHz,帧长为30ms,每帧有300个样点)的基于DFT的对数幅度谱。
其Matlab代码如下:load vowelsx = vowels.i_1(2001:2300);N = 1024; k= -N/2:N/2-1;X = fftshift (fft (x.*hann (length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])x = vowels.u_1(2001:2300);N= 1024; k = -N/2:N/2-1;X = fftshift (fft (x.*hann(length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])1.4画出一帧清音语音的基于DFT的对数幅度谱。
语音信号的短时分析一、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号短时分析的意义,短时时域分析的基本方法。
2.进一步理解和掌握语音信号短时平均能量函数及短时平均过零数的计算方法和重要意义。
二、实验原理及方法一定时宽的语音信号,其能量的大小随时间有明显的变化。
其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。
短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。
这在语音识别中有重要意义。
三、实验仪器微型计算机,Matlab软件环境四、实验内容1.上机前用Matlab语言完成程序编写工作。
2.程序应具有加窗(分帧)、计算、以及绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5.依据曲线对该语音段进行所需要的分析,并作出结论。
6.改变窗的宽度(帧长),重复上面的分析内容。
五、预习和实验报告要求1.预习课本有关内容,理解和掌握短时平均能量函数及短时平均过零数函数的意义及其计算方法。
2.参考Matlab有关资料,设计并编写出具有上述功能的程序。
六、上机实验报告要求:1.报告中,实验目的、实验原理、实验步骤、方法等格式和内容的要求与其它实验相同。
2.画出求得的、曲线,注明语音段和所用窗函数及其宽度。
阐述所作分析和判断的过程,提出依据,得出判断结论。
七、思考题1.语音信号短时平均能量及短时平均过零数分析的主要用途是什么?2.窗的宽度(帧长)的改变,对的特性产生怎样的影响?附:所用语音信号文件名为one.wavMatlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘中;3.在Command Window窗中输入文件名,运行程序;Matlab部分函数语法格式:读wav文件:x=wavread(`filename`)数组a及b中元素相乘: a.*b创建图形窗口命令:figure绘图函数:plot(x)坐标轴:axis([xmin xmax ymin ymax])坐标轴注解:xlabel(`…`) ylabel(`…`)图例注解:legend( `…`)一阶高通滤波器:y=filter([1-0.09375],1,x)分帧函数:f=enframe(x,len,inc)x为输入语音信号,len指定了帧长,inc指定帧移,函数返回为n×len的一个矩阵,每一行都是一帧数据。
本科毕业设计题目语音信号的短时频域分析学院信息工程学院专业电子信息工程班级081信工3班学号200883097姓名耿李广指导老师殷仕淑2012 年 5 月目录摘要 (1)第1章绪论 (3)1.1 课题的背景与意义 (3)1.2 国内外研究现状及发展趋势 (4)1.3 本文的仿真软件MATLAB (5)1.4 本文主要工作 (6)第2章语音信号的频域特点和抽样 (8)2.1 语音信号分析处理的一般流程 (8)2.2 语音信号的特点 (8)2.3 语音信号的抽样 (9)2.4 语音信号的分析技术 (11)第3章语音信号的频域分析 (12)3.1 语音信号分析的预处理 (12)3.2 利用短时博里叶变换求语音的短时谱 (13)3.3 语音信号的功率谱 (16)3.4 语音信号的语谱图 (17)3.5 复倒谱和倒谱 (19)第4章语音信号的综合仿真分析 (22)参考资料 (26)致谢 (27)附录 (28)语音信号的频域分析摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。
其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。
将语音看为一种特殊的信号,即一种“复杂向量”来看待。
通过调用处理数字信号工具MA TLAB里的命令函数,利用数字信号处理的知识来解决问题。
像给一般信号做频谱分析一样,也分析了语音信号的频谱。
本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用MATLAB进行仿真分析。
关键词:语音信号;频域分析;MA TLABSpeech signal analysis in frequency domainAbstractSpeech signal acquisition and analysis techniques are a wide range of cross-scientific,Its application and development of voice study, sound measurement study, electronic measuring technology, and digital signal processing disciplines, such as close contact. Collection and analysis of voice one of the small-scale equipment, intelligence, digital and multi-functional development of more and more quickly, faster than the previous analysis has been substantially high. The voice is taken as a special signal, a complex vector. By using the command functions in the digital signal processing tool-MATLAB, the digital signal processing can solve many problems. The spectrum of voice signals are analyzed, which is the same as the spectrum analysis of common signals. This paper introduces the voice signal acquisition and analysis of the history of the development, as well as the characteristics of speechsignal,Collection and analysis methods,Recording machine through the PC section of my own voices,the use of MA TLAB for simulation analysis.Keywords:audio signal,acquisition and analysis,MATLAB第1章绪论随着现代计算机技术的普及和发展,数字电子产品的使用越来越深入到人们的日常生活中。
语音信号的短时频域分析目录一、内容简述 (2)二、基础知识 (2)2.1 语音信号处理基础 (3)2.1.1 语音信号的特点 (5)2.1.2 语音信号的数字表示 (6)2.2 频域分析介绍 (7)三、短时傅里叶变换 (8)3.1 STFT的基本原理 (9)3.2 STFT的应用场景 (10)3.3 窗函数的选择和影响 (11)四、短时傅里叶变换的变体 (12)4.1 连续小波变换 (13)4.1.1 CWT的基本概念 (14)4.1.2 CWT与STFT的比较 (15)4.2 离散小波变换 (16)4.2.1 DWT的基本概念 (18)4.2.2 DWT在语音信号处理中的应用 (19)五、短时频域特征提取 (20)5.1 梅尔频率倒谱系数 (21)5.1.1 MFCC的计算过程 (23)5.1.2 MFCC在语音识别中的作用 (24)5.2 谐波和基频估计 (26)5.2.1 基本周期分析与提取 (26)5.2.2 基频和共振峰的定位 (28)六、短时频域分析在实际中的应用 (29)6.1 语音增强 (30)6.2 语音去噪 (32)6.3 说话人识别与语音合成 (33)七、总结 (35)7.1 短时频域分析方法总结 (36)7.2 语音信号处理领域的发展趋势 (37)7.3 下一步研究方向与思考 (38)一、内容简述语音信号的短时频域分析是语音处理领域中一项重要的技术,该技术主要通过对语音信号进行短时的时间窗口划分,然后在每个时间窗口内进行频域分析,从而提取语音信号的频率特性。
这种分析方法有助于我们理解语音信号在不同时间段的频率变化,对于语音识别、语音合成、音频信号处理等领域具有广泛的应用价值。
本文将详细介绍短时频域分析的基本原理、方法、步骤以及在实际应用中的效果评估。
通过本文的阅读,读者将能够了解如何对语音信号进行短时频域分析,从而深入理解和掌握这一技术的实际应用。
二、基础知识信号是信息传递的一种形式,可以是模拟的或数字的。
实验一语音信号的短时分析一、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号短时分析的意义,短时时域分析的基本方法。
2.进一步理解和掌握语音信号短时平均能量函数及短时平均过零数的计算方法和重要意义。
二、实验原理及方法一定时宽的语音信号,其能量的大小随时间有明显的变化。
其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。
短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。
这在语音识别中有重要意义。
三、实验仪器微型计算机,Matlab软件环境四、实验步骤1.上机前用Matlab语言完成程序编写工作。
2.程序应具有加窗(分帧)、计算、以及绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5.依据曲线对该语音段进行所需要的分析,并作出结论。
6.改变窗的宽度(帧长),重复上面的分析内容。
五、操作步骤所用语音信号文件名为"shop.wav",拷贝到MATLAB工作目录。
Matlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘中;3.在Command Window窗中输入文件名,运行程序;Matlab部分函数语法格式:读wav文件:x=wavread(`filename`)数组a及b中对应元素相乘: a.*b创建图形窗口命令:figure绘图函数:plot(x)坐标轴:axis([xmin xmax ymin ymax])坐标轴注解:xlabel(`…`)ylabel(`…`)图例注解:legend( `…`)一阶高通滤波器: y=filter([1-0.09375],1,x)voicebox工具箱介绍:分帧函数:f=enframe(x,len,inc)x为输入语音信号,len指定了帧长,inc指定帧移,函数返回为n×len的一个矩阵,每一行都是一帧数据。
基于MATLAB 分析语音信号时域特征钱平(信号与信息处理 s101904010)一、时域特征实验原理及实验结果分析1.窗口的选择通过对发声机理的认识,语音信号可以认为是短时平稳的。
在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。
我们将每个短时的语音称为一个分析帧。
一般帧长取10~30ms 。
我们采用一个长度有限的窗函数来截取语音信号形成分析帧。
通常会采用矩形窗和汉明窗。
图1给出了这两种窗函数在帧长N=50时的时域波形。
0.20.40.60.811.21.41.61.82矩形窗samplew (n )0.10.20.30.40.50.60.70.80.91hanming 窗samplew (n )图1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下()⎩⎨⎧<≤=其他001Nn n whamming 窗的定义:一个N 点的hamming 窗函数定义为如下()⎪⎩⎪⎨⎧<≤--=其他00)12cos(46.054.0Nn N n n w π 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。
因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。
表1对比了这两种窗函数的主瓣宽度和旁瓣峰值。
00.10.20.30.40.50.60.70.80.91-80-60-40-200矩形窗频率响应归一化频率(f/fs)幅度/d B00.10.20.30.40.50.60.70.80.91-100-50Hamming 窗频率响应归一化频率(f/fs)幅度/d B图2 矩形窗和Hamming 窗的频率响应表1 矩形窗和hamming 窗的主瓣宽度和旁瓣峰值2.短时能量由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。
绪论语音信号处理是一门新兴的边缘学科,它是语音学与数字信号处理两个学科相结合的产物。
语音信号处理的目的是要得到某种语音特征参数以便高效地传输或存储,或者是通过某种处理运算以达到某种用途的要求。
通常认为,语音信息的交换大致上可以分为三类:(1)人与人之间的语言通信:包括语音压缩与编码、语音增强等。
(2)第一类人机语言通信问题,指的是机器讲话、人听话的研究,即语音合成。
(3)第二类人际语言通信问题,指的是人讲话、机器听话的情况,即语音识别和理解。
自20世纪80年代末期至今,语音合成技术又有了新的进展,特别是1990年提出的基音同步叠加(PSOLA)方法,使基于时域波形拼接方法合成的语音的音色和自然度大大提高。
语音编码的目的就是在保证一定语音质量的前提下,尽可能降低编码比特率,以节省频率资源。
语音编码技术主要有两个努力方向:一是中低速率的语音编码的实用化及如何在实用化过程中进一步提高其抗干扰、抗噪声能力,另一个是如何进一步降低其编码速率。
语音信号的数字模型人类的语音是由人的发声器官在大脑的控制下的生理运动产生的,人的发声器官由3部分组成:(1)肺和气管产生气源,(2)喉和声带组成声门,(3)由咽腔、口腔、鼻腔组成声道。
肺的发声功能主要是产生压缩气体,通过气管传送到声音生成系统,气管连接着肺和喉,它是肺与声道联系的通道。
响度——这是频率和强度级的函数,通常用响度(单位为宋)和响度级(单位为方)来表示。
人耳刚刚能听到的声音强度,称为“听阈”,此时响度级定为零方。
响度与响度级是有区别的,60方响度级比30方响度级的声音要响,但没有响了一倍。
响度是刻划数量关系的,2宋响度要比1宋响度的声音响一倍,1宋响度被定义为1kHz纯音在声响级为40dB时(声强为10^-12W/cm^2)的响度。
音高也称基音,物理单位为赫兹,主观感觉的音高单位是美(Mel),当声强级为40dB(或响度级为40方)、频率为1kHz 时,设定的音高为1000美。
语音信号时域和频域通俗理解概述及解释说明1. 引言1.1 概述语音是人类最基本、也是最常用的沟通方式之一。
人们通过声音来传递信息和表达情感。
对于语音信号的分析和处理,时域和频域是两个重要的角度。
时域分析主要关注声音信号在时间上的变化规律,而频域分析则关注声音信号在频率上的成分组成。
1.2 文章结构本文将以通俗易懂的方式,对语音信号的时域和频域进行解释和说明。
首先,我们将介绍时域和频域分析的基本概念及其重要性,然后详细讨论时域与频域分析中涉及到的关键点和方法。
最后,我们将总结观点并给出读者一些启示和建议。
1.3 目的本文旨在帮助读者理解语音信号时域与频域这两个概念,并且能够清晰明了地认识到它们在语音信号处理中所起到的作用。
通过对时域与频域分析方法的说明,读者可以更好地理解并应用这些知识于实际问题中。
同时,本文也希望能够引发读者对语音信号处理的更深层次的思考和探索。
2. 语音信号时域与频域通俗理解:2.1 语音信号时域分析:语音信号的时域分析是对声音在时间上的变化进行研究和处理。
时域分析主要关注声音的振幅和时间之间的关系。
在时域中,我们可以观察到声音振动的波形图。
当我们录制一段语音时,在录制过程中,麦克风会将声音转换为电信号,并按照一定的采样率记录下来。
这些记录的电信号就是我们所说的波形图。
波形图横坐标表示时间,纵坐标表示振幅。
通过观察波形图,我们可以获得很多有用的信息。
例如,振幅可以告诉我们声音的强度或者说响度,而波形图上不同部分振幅大小和模式的变化可以揭示出不同语音特征(如元音、辅音等)以及语速、语调等信息。
2.2 语音信号频域分析:语音信号的频域分析是对声音中各种频率成分进行研究和处理。
频域分析更注重声音中各个频率成分之间的关系以及它们在声谱上呈现出来的特征。
通过傅里叶变换的方法,我们可以将时域中记录的波形图转换为频谱图。
频谱图显示了声音中不同频率成分在整个录制时间内的存在情况。
横坐标表示频率,纵坐标表示声音强度。