第三讲 语音信号处理第3.1~3.4章
- 格式:ppt
- 大小:1.67 MB
- 文档页数:75
老师整理————语音信号处理复习知识点-11南理工§1.1 语音信号处理概述一、语音、语音信号处理的名词解释1、语音:是语言的声学表现,是声音和意义的结合体,是相互传递信息的重要手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。
2、语音信号处理:是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及很广的交叉学科。
它与语音学、语言学、声学、认知科学、生理学、心理学有密切关系。
3、语音信号的数字处理的优点:第二页第四段二、语音学的名词解释语音学:与语音信号处理存在十分密切的关系,是研究言语过程的一门科学,它包括三个研究内容:发音器官在发音过程中的运动和语音的音位特性;语音的物理特性;以及听觉和语言感知。
§1.2 语音信号处理的发展概况1、语音编码:语音编码技术是伴随着语音信号的数字化而产生的,目前主要应用在数字语音通信领域。
2、语音合成:语音合成的目的是使计算机能像人一样说话。
3、语音识别:语音识别是使计算机判断出所说的话的内容。
§2.2 语音产生的过程一、语音、清音、浊音1、语音:声音是一种波,能被人耳听到,振动频率在20Hz-20kHz之间。
语音是声音的一种,它是由人的发音器官发出的、具有一定语法和意义的声音。
语音的振动频率最高可达15kHz左右。
2、浊音、清音:语音由声带振动或不经声带振动来产生,其中由声带振动产生的音统称为浊音,而不由声带振动产生的音统称为清音。
浊音中包括所有的元音和一些辅音,清音包括另一部分辅音。
二、语音的产生过程(人体发出声音的基本过程):人类的语音是由人体发音器官在大脑控制下的生理运动产生的。
空气从肺部排出形成气流,冲击声带,如果声带是紧绷的,则则形成准周期性脉冲的空气流,产生“浊音”。
若声带完全舒展,则形成摩擦音或爆破音。
经过声道调制的空气流最后从口或鼻腔辐射出来,形成语音。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
目录目录 (1)摘要 (2)第一章绪论 (3)1.1 语音课设的意义 (3)1.2 语音课设的目的与要求 (3)1.3 语音课设的基本步骤 (3)第二章设计方案论证 (5)2.1 设计理论依据 (5)2.1.1 采样定理 (5)2.1.2 采样频率 (5)2.1.3 采样位数与采样频率 (5)2.2 语音信号的分析及处理方法 (6)2.2.1 语音的录入与打开 (6)2.2.2 时域信号的FFT分析 (6)2.2.3 数字滤波器设计原理 (7)2.2.4 数字滤波器的设计步骤 (7)2.2.5 IIR滤波器与FIR滤波器的性能比较 (7)第三章图形用户界面设计 (8)3.1 图形用户界面概念 (8)3.2 图形用户界面设计 (8)3.3 图形用户界面模块调试 (9)3.3.1 语音信号的读入与打开 (9)3.3.2 语音信号的定点分析 (9)3.3.3 N阶高通滤波器 (11)3.3.4 N阶低通滤波器 (12)3.3.5 2N阶带通滤波器 (13)3.3.6 2N阶带阻滤波器 (14)3.4 图形用户界面制作 (15)第四章总结 (17)附录 (18)参考文献 (21)摘要语音信号处理是将信号以数字方式表示并处理的理论和技术。
语音信号处理与模拟信号处理是信号处理的子集。
语音信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行语音信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而语音信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
语音信号处理的算法需要利用计算机或专用处理设备如语音信号处理器(DSP)和专用集成电路(ASIC)等。
语音信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。
语音信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。