汽轮机旁路系统的作用是什么
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
汽轮机旁路系统的功能及其选择岗位职责摘要:汽轮机旁路是单元制大型火力发电厂的重要辅助系统,旁路系统设计直接关系到机组的运行方式和控制策略。
发达国家中,大型机组担当调峰任务很重,旁路系统带来的好处相当明显。
在我国,大容量再热式机组都采用单元制系统,为了便于机组启停、调峰、事故处理和适应特殊运行方式,绝大多数再热式机组也都设置了旁路系统。
但事实上,不同型式的汽轮机,其旁路系统的容量和功能应不尽相同。
汽轮机旁路系统;功能与作用;功能选择一、汽轮机旁路的功能与作用考虑到汽轮机的空载流量与锅炉的最低负荷不一致,以及低负荷时中间再热器的保护问题,中间再热式机组应设置旁路系统,每一级旁路中都装有减温减压器。
当汽轮机的负荷低于锅炉稳定燃烧的最低负荷时,锅炉多送出的蒸汽可经过降压减温后送入再热器或低参数的蒸汽管道或直接排入凝汽器以回收工质。
当汽轮机负荷很低而使流经锅炉再热器的蒸汽量不足以冷却锅炉再热器时,绕过高压缸且经过旁路系统减温减压器冷却的蒸汽,可进入锅炉再热器进行冷却,从而保护再热器。
1、缩短机组启动时间及汽机冲转过程中协调蒸汽参数和流量汽轮机滑参数热态启动时,蒸汽进入气缸与气缸内壁接触,蒸汽温度上升较快,由于汽缸壁较厚且高中压缸为多层缸缸结构,传热到外壁需经较长时间,汽缸内、外壁容易出现较大的温差。
当汽机滑参数冷态启动时,汽缸壁温较低,而锅炉来的过热蒸汽温度很高,导致主蒸汽温度与气缸和转子温度不协调,容易引起汽轮机汽缸及其他部件热应力过大,缩短机组使用寿命。
故在机组启动期间,除监视汽缸内、外壁温差外,还必须控制好金属温度的升降速度。
一般来讲,单元机组在启动过程中,锅炉蒸汽温度与汽机汽缸金属温度不协调是由锅炉的特性决定,先以低参数蒸汽冲转汽轮机,之后随着汽轮机升速、并网、带负荷的要求,不断提高主蒸汽的参数和流量。
所以机组启动时间的长短取决于锅炉达到汽轮机冲转要求的蒸汽参数(包括主蒸汽和再热蒸汽)的时间,而锅炉升温、升压速度取决于锅炉疏水管的排放。
--汽轮机旁路系统的主要作用有:1. 保护再热器。
机组正常运行中,汽轮机高压缸排汽进入再热器,再热器可以得到充分冷却。
但在启动过程中,汽轮机冲车前,或在机组甩负荷而高压缸无排汽时,再热器因无蒸汽流过或蒸汽流量不足,就有超温烧坏的危险。
设置旁路系统,使蒸汽流过再热器,便达到冷却再热器的目的;2. 改善启动条件,加快启动速度。
单元机组普遍采用滑参数启动方式,为了适应汽轮机启动过程中在不同阶段(暖管、冲车、暖机、升速、带负荷)对蒸汽参数的要求,锅炉要不断地调整汽压、汽温和蒸汽流量。
单纯调整锅炉燃烧或运行压力,很难达到上述要求。
采用旁路系统就可改善启动条件,尤其在机组热态启动时,利用旁路系统能很快地提高主蒸汽和再热蒸汽的温度,缩短启动时间,延长汽轮机寿命。
对于大容量机组,当发电机负荷减少、解列或只带厂用电负荷,以及汽轮机甩负荷时,旁路系统能在几秒钟内完全打开,使锅炉逐渐调整负荷,并保持在最低稳定燃烧负荷下运行,而不必停炉,在故障消除后可快速恢复发电,从而减少停机时间和锅炉的启停次数,大大缩短了单元机组的重新启动时间,有利于系统稳定;3. 回收工质,消除噪声。
机组在启停过程中,锅炉的蒸发量大于汽轮机的消耗量,在负荷突降和甩负荷时,有大量的蒸汽需要排出。
多余的蒸汽若直接排向大气,不仅损失了工质,而且对环境产生很大的噪声污染。
设置旁路系统,可以达到回收工质和消除噪声的目的。
另外,在机组突降负荷或甩负荷时,利用旁路系统排放蒸汽,可减少锅炉安全门的动作。
4利用旁路实现中压缸启动。
高、低压旁路系统有如下功能:(1)改善机组启动性能。
机组冷态或热态启动初期,当锅炉给出的蒸汽参数尚未达到汽轮机冲转条件时,这部分蒸汽就由旁路系统流到凝汽器,以回收工质,适应系统暖管和储能的要求。
特别是在热态启动时,锅炉可用较大的燃烧率和较高的蒸发量运行,加速提高蒸汽温温,使之与汽轮机的金属温度匹配,从而缩短启动时间。
(2)能够适应机组定压和滑压运行的要求。
1. 汽耗特性是指汽轮发电机组汽耗量与(电负荷)之间的关系,汽轮发电机组的汽耗特性可以通过汽轮机变工况计算或在机组热力试验的基础上求得。
凝汽式汽轮机组的汽耗特性随其调节方式不同而异。
2. 影响汽轮发电机组经济运行的主要技术参数和经济指标有(汽压),(汽温),真空度,(给水温度),汽耗率,循环水泵耗电率,高压加热投入率,凝汽器(端差),凝结水(过冷度),汽轮机热效率等。
3. 当发生厂用电失去,机组故障停机,当排汽温度小于(50℃)时,方可投入凝汽器冷却水,若排汽温度超过(50℃),需经领导同意,方可投入凝汽器冷却水(凝汽器投入冷却水后,方可开启本体及管道疏水)。
4. 除氧器滑压运行,当机组负荷突然降低,将引起除氧给水的含氧量(减少)。
5. 凝汽器内真空的形成和维持必须具备三个条件凝汽器铜管必须通过(一定水量);凝结水泵必须不断地把(凝结水抽走),避免水位(升高),影响蒸汽的凝结;抽气器必须不断地把漏入的空气和排汽中的其他气体抽走。
6. 安全阀是一种保证(设备安全)的阀门。
7. 汽轮机喷嘴损失和动叶损失是由于蒸汽流过喷嘴和动叶时汽流之间的(相互摩擦)及汽流与叶片表面之间的(摩擦)所形成的。
8. 汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向(负方向)发展。
9. 备用给水泵发生倒转时应关闭(出口门)并确认(油泵)在运行。
10. 汽轮机超速试验应连续做两次,两次的转速差小于(18 )r/min。
11. 汽轮机发生水冲击时,导致轴向推力急剧增大的原因是蒸汽中携带的大量水分在叶片汽道形成(水塞)。
12. 为了防止汽轮机通流部分在运行中发生摩擦,在机组启停和变工况运行时应严格控制(胀差)。
13. 在升速过程中,通过临界转速时瓦振不大于(0.1mm),轴振不大于(0.26mm) ,否则应立即打闸停机。
14. 小机盘车期间应保证(给水泵再循环阀)在全开位置,防止给水泵发生(汽化)现象。
15. 汽轮机从打闸停止进汽开始至转子静止,这段时间称(惰走)时间。
单元机组协调控制系统6.旁路控制系统6.1旁路系统的组成与功能一、旁路系统的组成汽机旁路系统是指与汽轮机并联的蒸汽减温、减压系统,如图所示。
它由旁路管道、减压、减温阀门及控制机构等组成。
其作用是在机组启动阶段或事故状态下将锅炉产生的蒸汽不经过汽轮机而引入下一级管道或凝汽器。
将主蒸汽旁通汽轮机的高压缸引入到再热器为高压旁路;将再热蒸汽旁通汽轮机的中、低压缸引入到凝汽器为低压旁路。
汽轮机旁路系统是随发电机组的发展而产生和发展的。
大型火电机组都采用大容量、高参数、中间再热式的热力系统,且采用机炉电单元配置,由于汽轮机和锅炉特性不同而带来机炉之间的某些不协调问题,可以通过设置旁路系统来解决。
根据各机组的不同情况,汽轮机旁路系统配置有不同的型号和不同的容量。
旁路容量在国内多数设计是30%或40%MCR(锅炉最大连续蒸发量),少数引进机组的旁路容量达100%MCR。
在旁路系统中,没有做功的主蒸汽和再热蒸将要分别旁通到再热器和凝汽器,为了防止再热器超压、超温和凝汽器过负荷,必须对旁通蒸汽进行减温、减压。
在高压旁路中,BP是高旁减压阀,BPE是喷水减温阀,BD为喷水隔离阀。
减温水为高压给水,BD也具有减压作用。
在低压旁路中,LBP是低旁减压阀,LBPE为喷水减温阀,减温水为凝结水。
相应地,旁路控制系统由高旁压力和高旁温度控制系统系统,低旁压力和低旁温度控制系统系统组成。
二、旁路系统的功能汽轮机旁路系统的主要作用是协助机组以最短的时间完成热态启动,在机组甩负荷时与锅炉和整个机组配合,实现甩负荷后的一些较复杂的运行方式(如机组快速切负荷FCB等),并进行锅炉超压防护。
合适的旁路容量和完善的自动控制系统可以配合机组协调控制系统来完成机组的压力全程控制。
汽机旁路系统的具有以下功能。
(1) 改善机组启动性能。
对于直流炉,无旁路系统不能启动。
机组冷态或热态启动初期,当锅炉输出的蒸汽参数尚未到达汽轮机冲转条件时,这部分蒸汽就由旁路系统通流到凝汽器,以回收汽水工质,以适应机组暖管的要求。
旁路系统功能介绍苏尔寿的旁路系统是一个满足整个电厂操作要求(锅炉和汽机)的相对独立的系统。
旁路系统和其他系统之间信号数量是较少的。
更重要的是,一个旁路控制器可以精确满足旁路操作的要求,并可以简便地实现安全功能或其他快开或速闭功能。
一、对于高压旁路来说主要有以下几个功能:1.锅炉启动控制器依据锅炉蒸汽产量的需要控制和增加锅炉蒸汽压力。
旁路控制蒸汽到再热器中,从而确保过热器和再热器中有适当的蒸汽流量。
只要有蒸汽通过旁路装置,旁路控制器必须控制进入再热器的蒸汽温度。
2.汽机启动HP旁路控制器必须控制蒸汽压力,直至锅炉主控制器可以进行压力控制为止。
3.负荷操作在汽机带负荷以后,旁路处于关闭状态,但是控制器可以防止超压和压力上升速率过快。
4.汽机甩负荷/跳闸旁路打开,必要时借助快开装置进行,以防止过高的蒸汽压力并且控制压力。
直到汽轮机再次承担起负荷为止。
5.安全功能(将旁路作为安全阀,本机组没有配备安全功能)下面就各个功能做一个简单的介绍。
自动启动过程和运行状态:旁路的自动启动过程是从锅炉点火到汽机接收所有蒸汽。
高压旁路自动启动有以下几个过程:最小阀位-最小压力-设定阀位-冲转压力。
在冷态启动时,也就是主汽压力小于1.0MPa的时候,旁路自动启动的过程如下:在锅炉点火以后,在触摸屏上点击STARTUP按钮,这时候旁路系统的状态显示会出现Ymin on和cold start,这时候进入最小阀位过程,高旁阀门会开启到设定的最小阀位Ymin,它可以确保在点火后过热器和再热器中有一定蒸汽流量通过。
这时候高旁会保持这个阀位不动。
随着燃烧主蒸汽压力上升,当有足够蒸汽使得汽压力上升到设定的最小压力Pmin的时候,进入了最小压力控制过程,屏幕显示切换到Warm start状态,这时候旁路会维持主汽压力为Pmin,在跟随燃烧蒸汽流量增加的情况下,为了维持此压力高旁阀门会打开控制压力。
在阀门开度达到设定的阀位Ym(由锅炉启动过程中需要的蒸汽流量决定)的时候,进入设定阀位过程。
59中国设备工程Engineer ing hina C P l ant中国设备工程 2018.05 (下)燃气轮机的动力装置可以简化的表示成由压气机、燃烧室、燃气轮机这三个基本的部分组成。
机组运行时,空气首先进入到叶轮式压气机之中,然后再压缩到一定的压力之后,送入到燃烧室内,再和燃油进行混合燃烧,燃烧的燃气温度通常能够达到1800~2300K。
这时将二次冷却空气和高温燃气进行混合,使得混合的气体能够降低到需要的适当的温度,最后再进入到燃气轮机内。
在燃气轮内的混合气,首先在静叶片组成的喷管中进行膨胀,再把热能转变成动能,这就能够形成一种高速的气流,气流冲进固定在转子上的由动叶片组成的气流通道,最后形成推力来推动叶片,使得转子发生转动,进而输出机械功。
燃气轮机所做出的功除了用来带动压气机以外,还将剩余部分的净功量对外进行输出。
最终从燃气轮机排出的废气排入大气,放热之后完成整个循环。
1 燃气轮机联合循环机组汽机旁路控制系统的原理旁路控制对机组暖机/提速、启动/停止、加/减负荷都有积极的作用,直接增加了机组的热力系统的循环倍率,要根据联合循环主设备的热力特性,根据它们的应力曲线来设计旁路控制的启闭规律。
旁路控制是由旁路管道、减压减温阀门以及控制机构等部件组成。
其主要作用是在机组启动阶段的时候,或者是事故状态下的时候,把锅炉所产生的蒸汽不通过汽轮机而直接引入到下一级的管道或者是凝汽器中。
所谓的布雷顿循环特性参数,其实就是循环增压比和循环增温比。
循环增压比也就是循环最高的压力和最低的压力的比值,通常用π来表示。
循环增温比就是循环的最高温度和循环的最低温度的比值,通常用τ来表示:21=p p π;31TT τ=布雷顿循环的热效率取决于循环增压比π,随着π的增大热效率逐渐提高,而和循环增温比τ没有关系。
燃气轮机实际运行循环的每个过程中都存在不可逆的因素,在这里只考虑压缩过程及膨胀过程中所存在的不可逆性。
2 燃气轮机联合循环机组汽机旁路控制系统的调节燃烧室旁路调节阀可调整到燃烧室的空气流量,从而保证燃烧器稳定燃烧,因此,燃空比可以通过此阀来调节;燃烧室旁路阀的控制信号输出为机组负荷、燃烧室压力、压气机入口空气温度和机组转速的函数。
第十五章旁路系统旁路系统的作用1、改善机组启动性能,缩短启动时间在启动过程中,旁路控制系统控制旁路阀门打开,使旁路系统作为锅炉的负载以便锅炉以较大的燃烧率启动,实现快速升温,升压,并将多余的蒸汽由旁路阀门直接引入冷凝器,可以使中间再热机组作为调峰机组,参与一次调频。
2、减少汽轮机热应力。
采用两班制或调峰运行的机组,启停频繁,由于锅炉和汽轮机的加热、冷却特性不同,使得在重新冲转时,锅炉出口的蒸汽温度与汽轮机的金属温度不匹配,从而造成汽轮机大型金属部件的热应力疲劳。
采用旁路控制系统可以使锅炉汽温与汽轮机金属尽可能匹配。
3、提高机组负荷适应性正常运行的机组快速降负荷时,汽轮机快速关小调节阀门。
这样,锅炉产生的蒸汽量和汽轮机通流量之间就会不平衡。
旁路控制系统控制旁路阀门排放多余的蒸汽,维持锅炉侧的汽水平衡。
4、事故工况下,保护机组,回收工质在发电机甩去全负荷或汽轮机故障停机时,旁路门迅速打开,防止超温超压,同时减少或避免锅炉再热器安全门起跳,避免了汽水损失,回收了工质,提高了经济性。
旁路系统的形式和容量1、旁路系统的形式旁路系统的布置型式有如下几种:I级旁路,即新蒸汽绕过汽轮机高压缸,经降压减温后直接进入再热器的管路,又称高压旁路。
Ⅱ级旁路,即再热器出来的蒸汽绕过汽轮机中低压缸,经降压减温后直接引入排汽装置的管路,又称低压旁路。
Ⅲ级旁路,即新蒸汽绕过整个汽轮机,经降压减温后直接进入排汽装置的管路,又称大旁路或整机旁路。
由上面三条旁路可组合成不同的旁路系统。
选用何种旁路,主要取决于锅炉的结构布置,再热器的材料以及对机组的运行要求(即是带基本负荷还是担任调峰)。
原则上讲,如果再热器布置在烟气高温区,在锅炉点火及甩负荷情况下必须通汽冷却时,宜采用高、低压旁路串联的双级旁路系统,如图15-1(a)所示;或者用高压旁路与Ⅲ级大旁路并联的双级旁路系统,如图15-1(b)所示。
如果再热器布置在烟气低温区域或允许在一定的时间内干烧而不要求通汽冷却,则可采用Ⅲ级大旁路的单级旁路系统,如图15-1 (c),以简化操作与维护,节约投资。
汽机旁路知识介绍根据自己学习总结介绍了,汽机旁路系统的配置、用途、功能及控制与保护。
列举了执行机构(气、液、电动)品牌厂家和其余汽机旁路的生产厂家。
并对汽机旁路亚临界、超临界和超超临界机组材料的选用;Cv值的计算;旁路喷水调节阀流量的确定;管道流速的选择与口径的确定等问题进行了分析。
对喷嘴等关键部件进行了思考。
一、汽轮机旁路概述汽轮机旁路系统是与汽轮机并联的蒸汽减温减压系统。
它由蒸汽旁路阀门、旁路阀门控制系统、执行机构和旁路蒸汽管道组成。
其作用是将锅炉产生的蒸汽不经过汽轮机而引到下一级压力和温度的蒸汽管道或冷凝器。
蒸汽旁路系统有两种:一种是将锅炉产生的蒸汽直接引入冷凝器,这种旁路系统称为大旁路。
另一种是由高、低压两级旁路系统组成:旁路汽轮机的高压缸而将蒸汽从锅炉引入再热器的称为高压旁路;旁路汽轮机的中、低压缸而将蒸汽从再热器出口引入冷凝器的称为低压旁路。
大型火电机组都采用高参数、中间再热式的热力系统,采用一机一炉的单元配置。
在这种机组中,一台锅炉只向一台汽轮机供汽,这就要求锅炉的产汽量与汽轮机的耗汽量保持平衡。
而实际上汽轮机的空载流量仅为汽轮机额定蒸汽流量的2%~5%,远远小于锅炉的最低稳定燃烧蒸发量(30%~50%)。
锅炉在更低的燃烧率下不能稳定运行。
因此必须有其它的蒸汽管道,作为锅炉的负载,承担其余的蒸汽流量。
另外当事故工况下汽轮机甩去负荷或停机时,大量的多余蒸汽必须通过旁路阀门而排入冷凝器,减少锅炉安全门起跳,同时避免大量蒸汽排入大气。
因此在中间再热机组中配置蒸汽旁路系统可以改善锅炉和汽轮机特性上的差异,提高机组的安全性和经济性。
汽机旁路系统首先用于欧洲的直流炉中,几乎所有的欧洲国家均使用了高低压汽机旁路系统,包括汽包炉.高压旁路把来自锅炉过热器的蒸汽排到再热器,低压旁路把来自再热器的蒸汽排到凝汽器,欧洲国家的旁路通常为100%的容量,中国的系统主要容量多选用在40%MCR,并且具有安全保护功能.为了满足大型汽轮机组启动运行和安全的需要,给机组配置旁路装置和切实可行的控制系统是十分必要的,旁路系统主要有电动和液动两大流派,气动系统主要应用于中小型机组. 旁路系统装置是火电机组重要的辅助设备,旁路系统设备的可靠性对电厂安全和经济运行影响较大,而系统设备的设计、安装、调试对旁路的运行效果有很大的影响。
一、填空1、在汽轮机中根据汽封所处的位置可分为汽封、汽封和汽封。
2、联轴器有、和三种类型3、与之比可以反映汽轮机热力过程完善程度,成为汽轮机的相对内效率。
4、强制流动锅炉有三种类型:锅炉、锅炉和锅炉。
5、循环倍率指与之比。
6、谐振电路中, 与的关系曲线称为谐振曲线。
7、汽轮机常用的调节方式有:、、。
8、常见轴向推力平衡措施有:、、和。
9、根据反动度的大小,汽轮机的级可以分为:、和。
10、排烟损失决定于和。
11、制粉系统主要有和两种类型。
12、过流保护的动作电流按躲过来整定。
13、蒸汽对汽轮机转子和汽缸等金属部件的放热系数并非固定不变,是随蒸汽的、和的变化而变化的.14、凝汽设备运行状态的优劣集中表现在如下三个方面:1);2);3) .15、汽压变化实质上反映了与之间的平衡关系16、使损失、损失、损失之和为最小的过剩空气系数α,称为最佳过剩空气系数.17、对于直流锅炉,调节汽温的根本手段是和保持适当比例。
18、功率因数是功率和功率的比值。
二、选择1、造成火力发电厂效率低的主要原因是()。
(A)锅炉效率低(B)汽轮机排汽热损失(C)发电机热损失(D)汽轮机机械损失2、汽轮机热态启动,冲转前要连续盘车时间不少于( )。
(A)6h (B)4h (C)2h (D)1h3、除氧器滑压运行,当机组负荷突然降低,将引起除氧给水的含氧量()。
(A)增大 (B)减小(C)波动(D)不变4、简单的蒸汽动力装置的理想循环是( )。
(A)卡诺循环(B)朗肯循环(C)再热循环5、抽气器的作用是抽出凝汽器中( ).(A)空气 (B)蒸汽(C)蒸汽和空气混合物(D)空气和不凝结气体6、提高初温,其它条件不变,汽轮机的相对内效率( )(A)提高(B)降低 (C)不变(D)先提高后降低7、火力发电厂的主要生产系统为()。
(A)输煤系统、汽水系统、电气系统 (B)汽水系统、燃烧系统、电气系统(C)输煤系统、燃烧系统、汽水系统(D)供水系统、电气系统、输煤系统8、转子在静止时严禁(),以免转子产生热弯曲.(A)向轴封供汽 (B)抽真空(C)对发电机进行投、倒氢工作(D)投用油系统9、当锅水含盐量达到临界含盐量时,蒸汽的湿度将()。
汽轮机旁路系统的构成、作用及工作原理发布时间:2010-4-13 9:54:00 点击数:45汽轮机旁路系统是现代单元机组热力系统的一个组成部分。
它的功能是,当锅炉和汽轮机的运行情况不相匹配时,即锅炉产生的蒸汽量大于汽轮机所需要的蒸汽量时,多余部分可以不进入汽轮机而经过旁路减温减压后直接引入凝汽器。
此外,有的旁路还承担着将锅炉的主蒸汽经减温减压后直接引入再热器的任务,以保护再热器的安全。
旁路系统的这些功能在机组启动、降负荷或甩负荷时是十分需要的。
例如,当机组冷态启动时,在汽轮机冲转、升速或开始带负荷时锅炉产生的蒸汽量要比汽轮机需要的蒸汽量大,此时旁路系统可作为启动排汽用。
这样,锅炉可以独立地建立与汽轮机相适应的汽温和汽压,保证二者良好的综合启动,从而缩短了机组的启动时间,也延长了汽轮机的使用寿命。
与向空排气相比及回收了工质,又消除了噪音污染在机组迅速降负荷时,要求汽轮机迅速关小主气门,而同时锅炉只可能缓慢的降负荷,即锅炉跟不上要求,此时旁路系统起着减压阀的作用。
这种情况下,旁路系统的存在使锅炉能独立与汽轮机而继续运行。
降负荷幅度越大,越迅速,越显示其优越性。
对于甩负荷事故情况,旁路系统能使锅炉保持在允许的蒸发量下运行,把多余的蒸汽引往凝汽器。
让运行人员有时间去判断甩负荷的原因,并决定锅炉负荷是应进一步下降还是继续保持下去,以便汽轮发电机组很快重新并网。
可见,旁路系统十分有利于单元机组的启动,也使机组运行具有很好的适应性,保证了启、停工况时的正常工作,并能在负荷急剧变动时起重要的保护作用。
关于旁路系统的成本,由于它具有减少机组的启动损失、缩短启动时间、汽轮机能在低应力下启动以及投运方便等益处而能很快回收。
常用的汽轮机旁路有高压旁路(亦称I级旁路)、低压旁路(亦称Ⅱ级旁路)和I级大旁路。
高压旁路可使多余蒸汽不进入汽轮机高压缸而直接进入再热器,蒸汽的压力和温度通过减温减压装置使蒸汽参数降至再热器人口处的蒸汽参数。
主再热蒸汽及旁路系统介绍本机组的主蒸汽系统采用双管一单管-双管布置. 主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。
汽轮机高压缸两侧分别设一个主汽门。
主汽门直接与汽轮机调速汽门蒸汽室相连接.主汽门的主要作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。
汽轮机正常停机时,主汽门也用于切断主蒸汽,防止水或主蒸汽管道中其它杂物进入主汽门区域。
一个主汽门对应两个调速汽门。
调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的需要。
汽轮机进口处的自动主汽门具有可靠的严密性,因此主蒸汽管道上不装设电动隔离门。
这样,既减少了主蒸汽管道上的压损,又提高了可靠性,减少了运行维护费用。
在锅炉过热器的出口左右主蒸汽管上各设有一只弹簧安全阀,为过热器提供超压保护.该安全阀的整定值低于屏式过热器入口安全阀,以便超压时过热器出口安全阀的开启先于屏式过热器入口安全阀,保证安全阀动作时有足够的蒸汽通过过热器,防止过热器管束超温。
所有安全阀装有消音器。
在过热器出口主汽管上还装有两只电磁泄压阀,作为过热器超压保护的附加措施.设置电磁泄压阀的目的是为了避免弹簧安全阀过于频繁动作,所以电磁泄压阀的整定值低于弹簧安全阀的动作压力。
运行人员还可以在控制室内对其进行操作。
电磁泄压阀前装设一只隔离阀,以供泄压阀隔离检修。
主蒸汽管道上设有畅通的疏水系统,它有两个作用。
其一是在停机后一段时间内,及时排除管道内的凝结水。
另一个更重要的作用是在机组启动期间使蒸汽迅速流经主蒸汽管道,加快暖管升温,提高启动速度.疏水管的管径应作合适选择,以满足设计的机组启动时间要求。
管径如果太小,会减慢主蒸汽管道的加热速度,延长启动时间,而如果太大,则有可能超过汽轮机的背包式疏水扩容器的承受能力。
本机组的冷再热蒸汽系统也采用双管一单管—双管布置。
旁路系统的作用1)保护再热器正常工况时,汽轮机高压缸排汽通过再热器将蒸汽再热至额定温度,同时也使得再热器得以冷却保护。
在锅炉点火、汽轮机冲转前及停机不停炉、电网事故或甩负荷等工况时,自动主汽门已全关,汽轮机高压缸没有排汽来冷却再热器,使再热器处于干烧状态。
采用高压旁路引来新蒸汽经减压减温后,引入再热器使其起到冷却保护作用。
2)协调启动参数和流量,缩短起动时间,延长汽轮机寿命①单元式机组多采用滑参数启动,先以低参数蒸汽冲转汽轮机,再随汽轮机升速、带负荷需要,不断提高锅炉出口汽压、汽温和流量,使锅炉产生的蒸汽参数与汽轮机的金属温度相适应,以控制各项温差在允许范围,保证均匀加热汽轮机。
如只靠调整锅炉的燃料或蒸汽压力难以实现,热态启动尤为困难,设置了旁路系统就可满足上述要求。
②大机组新汽管道直径大、管壁厚、热容量大、需大量蒸汽来暖管,使新汽管道的壁温高于汽轮机冲转参数要求的温度值。
如没有旁路系统而仅靠疏水管排放,要达到冲转参数要求可能需要几十小时。
可见,采用了旁路系统可加快启动速度,缩短并网时间,节省运行费用。
③我国中间再热式大机组必需承担高峰,启停变工况运行频繁。
一般冷态启动一次汽轮机寿命损耗率约为0.1%,而热态启动约为0.01%,两者相差10倍左右。
金属温度变化幅度和金属温升率越小,其寿命损耗率越小。
采用旁路系统可满足机组启停时对汽温的要求,严格控制汽轮机的金属温升率,可减少汽轮机的寿命损耗,延长其寿命。
3)回收工质和热量、降低噪声燃煤锅炉如投油助燃,其最低稳燃负荷,一般不低于锅炉额定蒸发量的50%,而汽轮机的空载汽耗量,一般仅为汽轮机额定汽耗量的5%~7%,单元式机组启停或甩负荷时,锅炉蒸发量与汽轮机所需蒸汽量两者不平衡时会有大量剩余蒸汽,如排入大气,将造成大量工质损失和严重的排汽噪音。
设置了整机旁路或高低压两级串联旁路,即可回收这些大量剩余蒸汽到凝汽器中去,又可减少热损失,降低严重排汽噪音。
4)防止锅炉超压,兼有锅炉安全阀作用机组故障锅炉紧急停炉时,旁路系统快速打开,将剩余蒸汽排出,防止锅炉超压,减少锅炉安全阀的起跳次数,保证安全阀的严密性。
第十五章旁路系统1.1 旁路系统的作用1、改善机组启动性能,缩短启动时间在启动过程中,旁路控制系统控制旁路阀门打开,使旁路系统作为锅炉的负载以便锅炉以较大的燃烧率启动,实现快速升温,升压,并将多余的蒸汽由旁路阀门直接引入冷凝器,可以使中间再热机组作为调峰机组,参与一次调频。
2、减少汽轮机热应力。
采用两班制或调峰运行的机组,启停频繁,由于锅炉和汽轮机的加热、冷却特性不同,使得在重新冲转时,锅炉出口的蒸汽温度与汽轮机的金属温度不匹配,从而造成汽轮机大型金属部件的热应力疲劳。
采用旁路控制系统可以使锅炉汽温与汽轮机金属尽可能匹配。
3、提高机组负荷适应性正常运行的机组快速降负荷时,汽轮机快速关小调节阀门。
这样,锅炉产生的蒸汽量和汽轮机通流量之间就会不平衡。
旁路控制系统控制旁路阀门排放多余的蒸汽,维持锅炉侧的汽水平衡。
4、事故工况下,保护机组,回收工质在发电机甩去全负荷或汽轮机故障停机时,旁路门迅速打开,防止超温超压,同时减少或避免锅炉再热器安全门起跳,避免了汽水损失,回收了工质,提高了经济性。
1.2 旁路系统的形式和容量1、旁路系统的形式旁路系统的布置型式有如下几种:I级旁路,即新蒸汽绕过汽轮机高压缸,经降压减温后直接进入再热器的管路,又称高压旁路。
Ⅱ级旁路,即再热器出来的蒸汽绕过汽轮机中低压缸,经降压减温后直接引入排汽装置的管路,又称低压旁路。
Ⅲ级旁路,即新蒸汽绕过整个汽轮机,经降压减温后直接进入排汽装置的管路,又称大旁路或整机旁路。
由上面三条旁路可组合成不同的旁路系统。
选用何种旁路,主要取决于锅炉的结构布置,再热器的材料以及对机组的运行要求(即是带基本负荷还是担任调峰)。
原则上讲,如果再热器布置在烟气高温区,在锅炉点火及甩负荷情况下必须通汽冷却时,宜采用高、低压旁路串联的双级旁路系统,如图15-1(a)所示;或者用高压旁路与Ⅲ级大旁路并联的双级旁路系统,如图15-1(b)所示。
如果再热器布置在烟气低温区域或允许在一定的时间内干烧而不要求通汽冷却,则可采用Ⅲ级大旁路的单级旁路系统,如图15-1 (c),以简化操作与维护,节约投资。