第七章 抽样推断与检验
- 格式:ppt
- 大小:878.00 KB
- 文档页数:94
第七章抽样设计与推断第一节抽样设计一、抽样推断与抽样设计的概念(一)抽样推断抽样推断(Sampling inference)是在抽样调查的基础上,利用样本的实际资料计算样本指标(统计量),并据以推算总体相应特征值(总体参数)的一种统计分析方法。
抽样推断具有如下特点:第一,抽样推断是建立在随机取样的基础上。
按随机原则抽取样本单位,是抽样推断的前提。
所谓随机原则就是在抽选调查单位的过程中,完全排除人为的主观因素的干扰,以保证使现象总体中的每一个个体都有一定的可能性被选中。
换句话讲,哪些单元能够被选作调查单位纯属偶然因素的影响所致。
这里需说明几点:①随机并非“随意”。
随机是有严格的科学含义的,可用概率来描述,而“随便”仍带有人为的或主观的因素,它不是一个科学的概念;②随机原则不等于等概率原则;③随机原则一般要求总体中每个单元均有一个非零的概率被抽中;④抽样概率对总体参数的估计有影响。
只有坚持抽取的随机原则,才能使被抽中单位的频数分布类型与调查对象相同,从而增强被抽中单位对总体的代表性,达到推断总体的目的。
第二,抽样推断是由部分推算整体的—种认识方法。
即对抽取的调查单位进行调查研究,取得调查单位的实际资料,计算出调查单位的指标数值,并据以推断和估计总体的指标数值。
第三,抽样推断以概率论中的大数法则和中心极限定理为理论依据。
第四,抽样误差可以事先计算和控制。
抽样调查除具有十分明显的特色之外,还在实际应用过程中发挥着突出的作用。
其一,抽样调查能够解决全面调查所无法解决的现象的调查问题。
在实际工作中,对某些现象常常可能一方面需要了解其全面情况,另一方面又由于现象自身的特性决定了无法通过全面调查获取资料。
此时,只有使用抽样调查。
该类现象主要有:(1)产品质量的破坏性检验。
如轮胎的里程寿命试验,青砖的抗折耐压试验,炮弹的杀伤力试验,弹簧的抗拉强度试验等等。
(2)无限总体的调查。
无限总体所包含的总体单位数目无限多个,无法一一调查。
(抽样检验)第七章整群抽样第七章整群抽样第壹节整群抽样概述壹、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取壹部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元能够分成多级,则能够对前几级单元采用多阶抽样,而在最后壹阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的俩个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中且不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括俩步:首先,总体被分为群;然后,在总体中抽取群的样本且访问群中的所有单元。
如果总体单元是自然分成组或群的,创建壹个这种关于群的抽样框且对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而能够创建地域框。
群的抽取能够采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样壹样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有俩个问题:壹是如何定义群,即当群且非是壹个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取壹部分群进行调查,且在抽中的群内作全面调查。
第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。
第七章 抽样推断与检验习题一、填空题1.抽选样本单位时要遵守 原则,使样本单位被抽中的机会 。
2.常用的总体指标有 、 、 。
3.在抽样估计中,样本指标又称为 量,总体指标又称为 。
4.全及总体标志变异程度越大,抽样误差就 ;全及总体标志变异程度越小,抽样误差 。
5.抽样估计的方法有 和 两种。
6.整群抽样是对被抽中群内的 进行 的抽样组织方式。
7.常用的离散型随机变量分布包括 、二项分布和 。
8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下: ;不重复抽样条件下: 。
9.误差范围△,概率度t 和抽样平均误差σ之间的关系表达式为 。
10.对总体指标提出的假设可以分为原假设和 。
二、单项选择题1.所谓大样本是指样本单位数在( )及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.成数方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.总体平均数和样本平均数之间的关系是( )A 总体平均数是确定值,样本平均数是随机变量B 总体平均数是随机变量,样本平均数是确定值C 两者都是随机变量D 两者都是确定值6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。
A 95.45%B 99.7396C 68.27%D 90%7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( ) A 扩大为原来的3倍 B 扩大为原来的2/3倍C 扩大为原来的4/9倍D 扩大为原来的2.25倍8.假设检验是检验( )的假设值是否成立A 样本指标B 总体指标C 样本方差D 样本平均数9.在假设检验中的临界区域是( )A 接受域B 拒受域C 置信区间D 检验域10.假设检验和区间估计之间的关系,下列说法正确的是( )A 虽然概念不同,但实质相同B 两者完全没有关系C 互相对应关系D 不能从数量上讨论它们之间的对应关系三、多项选择题1.影响抽样误差大小的因素有( )A 抽样组织方式和抽样方法不同B 全及总体的标志变动度的大小C 样本单位数的多少D 抽样总体标志变动度的大小E 抽样的随机性2.常用的样本指标有( )A 样本平均数B 样本成数C 抽样误差D 样本方差E 标准差3.在简单随机重复抽样条件下,抽样单位数n 的计算公式为( )A 222x t n ∆=σB 22222σσt x N N t n +∆=C 22)1(Np p p t n -= D )1()1(222p p t p N p Np t n -+∆-= E 2222)1(Np p p t n -= 4.在总体2000个单位中,抽取20个单位进行调查,下列各项正确的是( ) A 样本单位数是20个 B 样本个数是20个C 一个样本有20个单位D 样本容量是20个E 是一个小样本5.若进行区间估计,应掌握的指标数值是( )A 样本指标B 概率度C 总体单位数D 抽样平均误差E 样本单位数6.参数估计方法有( )A 点估计B 区间估计C 统计估计D 抽样估计E 假设检验7.衡量点估计量好坏的标准有( )A 无偏性B 一致性C 有效性D 充分性E 随机性8.根据样本指标,分析总体的假设值是否成立的统计方法称为( )。
第七章 抽样调查一、本章重点1.抽样调查也叫做抽样推断或参数估计,必须坚持随机抽样的原则。
它是一种非全面调查,其意义在于对总体的推断上,存在可控制性误差。
是一种灵活快捷的调查方式。
2.抽样调查有全及总体与样本总体之区分。
样本容量小于30时一般称为小样本。
对于抽样调查来讲全及总体的指标叫做母体参数,是唯一确定的未知的量,样本指标是根据样本总体各单位标志值计算的综合性指标,是样本的一个函数,是一个随机变量,抽样调查就是要用样本指标去估计相应的总体指标。
样本可能数目与样本容量有关也与抽样的方法有关。
抽样方法可以分为考虑顺序的抽样与不考虑顺序的抽样;重复抽样与不重复抽样。
3.大数定律、正态分布理论、中心极限定理是抽样调查的数理基础。
正态分布的密度函数有两个重要的参数(σ;x )。
它有对称性、非负性等特点。
中心极限定理证明了所有样本指标的平均数等于总体指标如X x E =)(。
推出了样本分布的标准差为:1--=N n N n x σμ。
4.抽样推断在逻辑上使用的是归纳推理的方法、在方法上使用的是概率估计的方法、存在着一定误差。
无偏性、一致性和有效性是抽样估计的优良标准。
抽样调查既有登记性误差,也有代表性误差,抽样误差是一个随机变量,而抽样的平均误差是一个确定的值。
抽样误差受总体标志值的差异程度、样本容量、抽样方法、抽样组织形式的影响。
在重复抽样下抽样的平均误差与总体标志值的差异程度成正比,与样本容量的平方根成反比即n x σμ=,不重复抽样的抽样平均误差仅与重复抽样的平均误差相差一个修正因子即N nn x -=1σμ。
在通常情况下总体的方差是未知的,一般要用样本的方差来代替。
把抽样调查中允许的误差范围称作抽样的极限误差x ∆或p ∆。
μt =∆,用抽样的平均误差来度量抽样的极限误差。
把抽样估计的把握程度称为抽样估计的置信度。
抽样的极限误差越大,抽样估计的置信度也越大。
抽样估计又可区分为点估计和区间估计。