控制系统数学模型
- 格式:ppt
- 大小:563.50 KB
- 文档页数:38
第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。
是对实际物理系统的一种数学抽象。
模型各有特点,使用时可灵活掌握。
若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。
11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。
控制系统数学模型
控制系统数学模型是指用数学方法对控制系统进行建模和分析
的过程。
控制系统是指对一些物理过程进行控制的系统,包括机电控制系统、化工控制系统、航空航天控制系统等。
数学模型是指对一个系统或过程进行描述的数学式子或方程组。
建立控制系统的数学模型是控制工程的重要基础之一。
通过建立数学模型,可以更加深入地理解系统的特性,优化控制策略,提高系统的效率和稳定性。
在建立控制系统数学模型时,需要先对被控系统进行分析,确定系统的物理特性和运动规律。
然后,根据控制对象的特性,选择适当的数学模型进行建立。
常用的控制系统数学模型包括线性时不变系统模型、非线性系统模型、时变系统模型等。
线性时不变系统模型是指系统的输出与输入之间满足线性关系,且系统的特性不随时间变化。
非线性系统模型是指系统的输出与输入之间不满足线性关系。
时变系统模型是指系统的特性随时间变化。
除了建立数学模型外,还需要对模型进行分析和仿真。
常用的分析方法包括传递函数法、状态空间法等。
仿真可以通过计算机模拟系统运动过程,验证控制策略的有效性。
总之,控制系统数学模型是控制工程的重要基础之一,对于提高控制系统的性能和稳定性具有重要意义。
- 1 -。
可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。
自动控制原理控制系统的数学模型自动控制原理是现代控制工程学的基础,在控制系统的设计中起着至关重要的作用。
控制系统的数学模型是指通过数学方法对控制系统进行建模和描述,以便分析和设计控制系统的性能和稳定性。
控制系统的数学模型可以分为时域模型和频域模型两种形式。
一、时域模型时域模型是描述控制系统在时间域上动态行为的数学表达式。
时域模型是基于系统的差分方程或微分方程的。
1.线性时不变系统的时域模型对于线性时不变系统,可以通过系统的微分方程或差分方程来建立时域模型。
常见的时域模型包括:-一阶系统的时域模型:y(t)=K*(1-e^(-t/T))*u(t)-二阶系统的时域模型:y(t)=K*(1-e^(-t/T))*(1+t/Td)*u(t)2.非线性系统的时域模型对于非线性系统,时域模型可以通过系统的状态空间方程来建立。
常见的非线性系统时域模型包括:- Van der Pol方程: d^2x/dt^2 - μ(1 - x^2) * dx/dt + x = 0 - Lorenz方程:dx/dt = σ * (y - x), dy/dt = rx - y - xz, dz/dt = xy - βz二、频域模型频域模型是描述控制系统在频域上动态行为的数学表达式。
频域模型是基于系统的传递函数或频率响应函数的。
1.传递函数模型传递函数是系统的输入和输出之间的关系,是频域模型的核心。
传递函数可以通过系统的拉普拉斯变换或Z变换得到。
常见的传递函数模型包括:-一阶系统的传递函数模型:G(s)=K/(T*s+1)-二阶系统的传递函数模型:G(s)=K/(T^2*s^2+2ξ*T*s+1)2.频率响应模型频率响应函数是系统在不同频率下的输出和输入之间的关系。
频率响应函数可以通过系统的传递函数模型进行计算。
常见的频率响应模型包括:-幅频特性:描述系统在不同频率下的增益变化-相频特性:描述系统在不同频率下的相位变化控制系统的数学模型是对系统动态行为的数学描述,通过对控制系统进行数学建模和分析,可以有效地设计和优化控制系统,提高系统的性能和稳定性。
控制系统的数学模型
控制系统是一种能够自动实现某种规律性动态过程的机电设备,具有广泛的应用和重要的意义。
为了更好地理解和设计控制系统,我们需要学习控制系统的数学模型。
控制系统的数学模型是对系统动态行为的精确描述,通常用微分方程或差分方程来表示。
这个模型是由系统的结构和性质所决定的,因此在设计控制系统时需要考虑到不同方面的因素。
在实际应用中,通常采用系统的状态空间描述法来建立数学模型,其基本形式是:x(t+1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
其中,x(t)为系统的状态向量,表示系统各输出量之间的关系;u(t)为输入量向量,表示系统受控的变量;y(t)为输出量向量,表示系统运行时的响应状态;A、B、C、D是系统常数矩阵,分别表示状态转移矩阵、输入特性矩阵、输出矩阵和直流通道矩阵。
这个模型允许我们对控制系统的状态、输入、输出之间的关系进行全面的分析和掌握。
控制系统的数学模型建立好之后,我们需要对其进行仿真和实验验证。
通过模拟相应的输入和输出,可以检验数学模型的可靠性和精度,并找出有误差的地方进行调整和改进。
同时,也能够为控制系统的设计和优化提供有力的指导和参考。
综上所述,控制系统的数学模型是其设计和优化的基础和关键,
建立好数学模型能够更全面地分析和预测系统的运行状态,并为进一
步进行仿真和实验提供必要的基础。
因此,在学习和设计控制系统时,需要注重数学模型的学习和应用,以提高系统的可靠性和实用性。