第5章 船模阻力试验
- 格式:doc
- 大小:347.50 KB
- 文档页数:22
船舶阻力复习题及部分解析《船舶阻力》思考题与习题第一章总论1)《船舶阻力》学科的研究任务与研究方法。
答:本课程着重介绍船舶航行时所受到的阻力的产生原因,各种阻力的特性,决定阻力的方法,影响阻力的因素以及减少阻力的途径等问题。
2)船舶在水中航行时,流场中会产生那些重要物理现象?它们与阻力有何关系?3)影响船舶阻力的主要因素有那些?4)各阻力成分及其占总阻力的比例与航速有何关系?低速船摩擦阻力70%~80%,粘压阻力10%以上兴波阻力很小高速船兴波阻力40%~50%,摩擦阻力50%粘压阻力5%5)物体在理想流体无界域中运动时有无阻力?应该注意的是压阻力中包含有粘压阻力和兴波阻力两类不同性质的力。
兴波阻力既使在理想流体中仍然存在,而摩擦阻力和粘压阻力两者都是由于水的粘性而产生的,在理想流体中并不存在。
6)何谓二物理系统的动力相似?7)何谓傅汝德(Froude )相似律?8)何谓雷诺(Reynolds )相似律?9) 船模试验中能否实现“全相似”?为什么?10)何谓“相应速度”(又称“相当速度”)?相应速度(模型)11)某海船航速)(0.100m L =,)(0.14m B =,)(0.5m T =,)(0.42003m =?,湿面积s=5.90(m2),V=17.0(kts),阻力试验中所用船模缩尺比25=α,在相当速度下测得兴波阻力w R =9.8(n),试验水温为12?C ,试求:i )船模的相当速度及排水量;ii )20?C 海水中实船的兴波阻力w R 。
注:1节(knot)=1.852(公里/小时)12)设825.1V R f ∝,2V R vp ∝,4V R w ∝,在某一航速下,t f R R %80=,t vp R R %10=,t w R R %10=,试计算当速度增加50%后,f R 、vp R 、w R 各占总阻力的百分比。
第二章粘性阻力1)何谓“相当平板”?相当平板:同速度、同长度、同湿表面相当平板假定:实船或者船模的摩擦阻力分别等于与其同速度,同长度,同湿面积的光滑平板摩擦阻力。
船模阻力实验
一、实验准备及安装要点
船模在拖曳水池中进行阻力实验,必须进行一系列实验准备工作.
1.制作船模:船模与实船要求几何相似,并表面光洁,加工误差在一定得范围内。
2.激流:一般应用得激流方法就是在船模首垂线后L/20处,装置直径为1毫米得金属激
流丝。
3.称重:按縮尺比得要求计算喜欢摸得排水量并进行称重,加压载,以满足实验所要求得
型排水量与吃水.
4.安装:船模安装在拖车上,应使其中纵剖面与前进方向一致,拖力作用线位于中纵剖面
内,其作用点在水线面附近得位置上并保持水平。
试验中得进退、纵摇、升沉运动应不受限制。
二、模型参数与实验数据
1,阻力实验相关参数
满载池水状态水线长度:L=3、803m
满载池水状态浸湿面积: S=2、737㎡
模型縮尺比:=40
实验水温: t=淡水20°C
2,满载池水状态船模拖曳阻力实验数据
三、阻力换算二因次法:
淡水20°C,,,,,
数据处理如下表:
四、船模阻力实验曲线(曲线)
1、曲线
2、V S—R S曲线。
第五章船模阻力试验船模试验是研究船舶阻力最普遍的方法,目前关于船舶阻力方面的知识,特别是提供设计应用的优良船型资料及估算阻力的经验公式和图谱绝大多数是由船模试验结果得来的。
新的理论的发展和新船的设计是否能得到预期的效果都需要由船模试验来验证。
而理论分析的进一步发展,又为船型设计和船模试验提供更为丰富的内容,以及指出改进的方向。
因此船模试验是进行船舶性能研究的重要组成部分。
本章先对船模试验池和船模阻力试验作一简要介绍,然后分别从设计和研究观点来讨论表达船模阻力数据的方法。
§5-1 拖曳试验依据、设备和方法船模试验是研究船舶阻力性能的主要方法。
因此需要了解船模阻力试验的依据,试验设备和具体的试验方法。
一、船模阻力试验的依据由§1-2的阻力相似定律指出:如能使船模和实船实现全相似,即船模和实船同时满足Re 和Fr数相等,则可由船模试验结果直接获得实船的总阻力系数。
§1-4中已阐述船模和实船难以实现全相似条件。
根据现实可能性,也不能实现船模和实船单一的粘性相似,即保持Re 相等,这是因为,如要使Re m= Re s,则必有:υm L m/v m= υs L s/v s即υm= αυs v m/ v s(5-1) 式中,α为船模缩尺比。
因为船模和实船的运动粘性系数两者数值相近,如假定v m= v s,则(5-1)式为:υm= αυs(5-2) 由于船模均要比实船缩小几十倍以上,因而要求船模的速度较实船速度大几十倍,甚至达到超音速情况下进行试验,显然是不现实的。
因此船模阻力试验,对水面船舶来说,实际上就是在满足重力相似条件下(保持Fr数相等)进行的。
由于是在部分相似条件下所得的船模阻力值,因此必需借助于某些假设,诸如傅汝德假定,休斯假定等才能换算得到相应的实船总阻力。
二、船模试验池船模试验池是进行船舶性能研究和某些结构、强度试验的重要设施,因而世界各国均普遍建造了各种船模试验池。
船模阻力实验
一、实验准备及安装要点
船模在拖曳水池中进行阻力实验,必须进行一系列实验准备工作。
1.制作船模:船模与实船要求几何相似,并表面光洁,加工误差在一定的范围内。
2.激流:一般应用的激流方法是在船模首垂线后L/20处,装置直径为1毫米的金属激流
丝。
3.称重:按縮尺比的要求计算喜欢摸的排水量并进行称重,加压载,以满足实验所要求的
型排水量和吃水。
4.安装:船模安装在拖车上,应使其中纵剖面与前进方向一致,拖力作用线位于中纵剖面
内,其作用点在水线面附近的位置上并保持水平。
试验中的进退、纵摇、升沉运动应不受限制。
二、模型参数和实验数据
1,阻力实验相关参数
满载池水状态水线长度:L=3.803m
满载池水状态浸湿面积:S=2.737㎡
模型縮尺比: =40
实验水温:t=淡水20°C
2,满载池水状态船模拖曳阻力实验数据
三、阻力换算
二因次法: )(tm fm fs ts C C C C -+=
淡水20°C ,)(s m /100374.012
6-⨯=υ ,3
998.16/kg m ρ=
20.075(lg Re 2)Cfm =
-,
Re vl m υ=,2
12
Rts Vs Ss ρ=,2,Vs Ss Sm λ== 数据处理如下表:
V R-曲线)四、船模阻力实验曲线(m m
V R-曲线
1、m m
2. V S-R S曲线。
试验目的比较船型,确定阻力性能,确定速度性能,确定航行状态
比较船体总阻力的各种计算方法,分析船体各种阻力成分的特性
确定附体的形状与安装位置
试验设备主要任务:船模静水阻力实验,螺旋桨模型敞水实验,船模自航实验水池类型:长方形、方形、水槽;拖车式、重力式
水池尺度:加速段、匀速段、减速段;长度、深度、宽度
测试设备:阻力、速度、航态
船舶模型:尺寸小、速度低
试验方法研究背景、试验方案、试验准备、测量数据、数据处理、结果分析、结论理论基础
Fr
假定的基本思想
几何相似船模组试验结果
Ct (Re 、Fr )=Cf (Re )+Cr (Fr )
Fr 相等——Cr 相等——ΔCt=ΔCf(Re) Re 相等——Cf 相等——ΔCt=ΔCr(Fr)
横坐标
lgRe
,总坐标Ct ,船模总阻力曲线,
Fr
等值线
平行:Fr 假定合理性
不平行:摩擦阻力与剩余阻力相互影响。
休斯假定的基本思想 几何相似船模组试验结果
Ct=(1+k )Cf+Cw K 形状因子
横坐标Cf ,总坐标Ct ,船模总阻力曲线,Fr 等值线
平行:斜率相等,k 为常数 不平行:k 不为常数
阻力=f (船型、大小、速度)
船模阻力数据表达方法:阻力曲线(Rt-V )——曲线(阻力系数-速度系数) 目的:船型相同、大小不同的船舶之间的阻力换算 大小相同、船型不同的船舶之间的船型比较 速度系数
阻力系数
Talyor泰勒方法 Froude付汝德方法
阻力速度
只有在相等时此表达法才正确。
船模阻力实验报告本次实验旨在探究不同水深下船模的阻力情况。
研究对象为同一型号的船模,在浅水域和深水域两种环境下进行测试。
实验分为两部分,首先在浅水域进行测试。
实验采用水槽作为测试场地,选用了水深为10cm和20cm两种情况。
先在10cm的水深下进行一段时间的加速测试,记录下船模到达不同速度时所需的时间,利用数据计算出每个速度下的加速度和阻力。
其中,加速度的计算公式为a=(v2-v1)/t,而阻力则可通过牛顿第二定律R=F-ma计算得出。
同样的,20cm水深下的测试也是如此进行。
由于水深的不同会对测试结果产生影响,为了消除这种影响,在实验开始之前还需要进行一组对照测试。
该组测试同样在水槽中进行,但是此时将水深调至船模长度的3倍。
通过对照测试的数据,可以清晰地了解到在不同水深下得到的阻力和加速度的差异。
实验结果显示,在相同速度下,船模在浅水域所受到的阻力明显高于深水域。
特别是在低速情况下,这种差异更加明显。
这种现象可以用“浅水效应”来解释:当水深较浅时,底部摩擦表面积增加,水流速度降低,从而导致阻力增大。
对照测试结果也印证了这一点,当水深达到一定程度之后,船模所受阻力基本趋于稳定。
此外,实验结果还表明,船模在加速阶段所受阻力明显高于匀速阶段。
这是因为当船模处于加速过程中,马达的输出功率需用于克服水的阻力和船舶本身的惯性,因此阻力更大;而当船模达到稳定速度后,其所受阻力主要来自于水的摩擦阻力,比较稳定。
综上所述,本次实验通过测试阻力的大小,展示了水深对船模的阻力影响,同时也揭示了浅水效应和加速阻力的存在。
这一研究对于深入探究水中摩擦力和阻力的特性具有一定意义。
船在水中的阻力公式船模阻力实验本科生实验报告书院系工学院应用力学与工程系专业班级理论与应用力学10级实验课程实验流体力学姓名程彬学号***-***** 实验地点中山大学工学院流体实验室实验时间2021年6 月7 日指导苏炜船模阻力实验船舶在水面上航行时,会遭受水的阻力作用。
如何预测船舶在航行时所遭受的阻力?船型和阻力之间的关系如何?这是船舶设计研究需要解决的重要问题。
迄今为止,船模阻力实验是确定船舶阻力的最有效的方法。
近年来,根据流体力学基本理论研究船舶阻力问题有很大进展,加上电子计算机的广泛应用,使得船舶阻力的理论计算方法有很大发展。
但是,由于船舶阻力问题比较复杂,在理论计算时常需作某些简化假定,故所得结果与实际到底存在多大差别,需要用船模实验结果进行检验,或进行适当的修正。
综上所述,船模阻力实验是目前研究船舶阻力最基本有效的方法。
一、实验目的和内容1. 测定船模阻力与速度之间的关系。
2. 求出实船阻力(有效功率)与航速之间的关系。
二、实验方法图1为我校试验水池简图。
拖车可沿水池两旁的轨道上行走;拖车上装置有控制、驱动系统及有关测量仪器,并载若干名试验人员。
图2表示船模与拖车连接的情况,拖曳船模的钢丝通过导轮与阻力仪连接。
图1试验时,预先根据实船速度Vs ,按相似定律确定船模速度Vm ,V m =V s /式中λ=L S,称缩尺比。
L M图2拖车起动,并通过刹船架夹住船模一起加速,当拖车达到所要求速度下等速前进时,松开刹船架,此时拖车通过钢丝拖着船模前进,由阻力仪器测出钢丝拖力(也就是船模阻力Rtm ),并同时用测速仪测量拖车速度(也就是船模速度Vm )。
记录完毕,刹住船模,拖车减速,刹车,退回原处,这就完成了一个速度点的试验。
重复上述过程,直到得到完整的一条阻力曲线。
三、由船模试验结果换算到实船阻力的方法由船舶阻力理论已知,船舶在航行时遭受的总阻力可分为摩擦阻力、形状阻力和兴波阻力。
船模试验只能测得其总阻力。
船模阻力试验指导书一、试验目的船模阻力试验的目的可归结为:通过船模试验,确定实船的阻力和有效功率;分析比较船型的优劣;提供设计应用的优良船型资料及估计阻力的图表或公式等。
《船舶阻力》课程教学试验的要求是:1. 使学生对船模阻力试验的过程有一个全面的了解,并加深对课程有关内容的理解;2. 要求掌握实船阻力的换算方法:3. 写出试验报告,以培养学生进行科学试验研究的能力。
二、船模阻力试验的准备船模在拖曳水池中进行阻力试验,必须进行一系列试验准备工作:1. 制作模型:船模的线型要与实船保持几何相似,并要求表面光洁,加工误差在一定范围之内。
2. 激流:一般应用的激流方法是在离船模首垂线后L/20处装设直径为1毫米的激流丝。
3. 称重:按模型缩尺比的要求计算船模的排水量,并进行称重量、加压载,以满足试验所要求的排水量和吃水。
4. 安装:船模安装到拖车上,应使其纵中剖面与前进方向一致,拖力作用线应位于纵中剖面内其作用点在水线面附近的位置上并保持水平。
试验过程中的进退、纵摇和升沉运动应不受限制。
完成上述试验准备工作后,即可进行拖曳试验。
三、阻力试验的测量数据船模阻力试验要求测量记录以下四个物理量:在每一个速度m v 时记录或测量对应的船模阻力tm R 。
如要求测量航行纵倾角ψ和船模重心处的上升下沉量m Z 时,应与阻力测量同时进行。
一般情况下:由阻力仪测定船模阻力;由测速装置测定船模速度;由纵倾仪测定航行纵倾和船模垂向运动位移。
1. 阻力仪原理:图1表示船模与摆秤式阻力仪的连接情况。
由固定连接在一起的C B A 、、三轮子所组成的摆秤可以绕O 轴转动,拖曳船模的钢丝通过导轮E 与A 轮相连接;B 轮上挂有砝码盘。
船模被拖曳过程中所受阻力的主要部分由砝码盘所平衡;其余小量部分可由A 轮下方的摆锤p 的偏移所平衡。
而摆锤偏移的大小可以由连接C 轮和F 轮的钢丝下端所装的记录笔在记录筒上记下摆秤的偏移角度θ求得。
中山大学本科生实验报告书院系工学院应用力学与工程系专业班级理论与应用力学10级实验课程实验流体力学姓名程彬学号 ******** 实验地点中山大学工学院流体实验室实验时间 2013年 6 月 7 日指导教师苏炜船模阻力实验船舶在水面上航行时,会遭受水的阻力作用。
如何预测船舶在航行时所遭受的阻力?船型和阻力之间的关系如何?这是船舶设计研究需要解决的重要问题。
迄今为止,船模阻力实验是确定船舶阻力的最有效的方法。
近年来,根据流体力学基本理论研究船舶阻力问题有很大进展,加上电子计算机的广泛应用,使得船舶阻力的理论计算方法有很大发展。
但是,由于船舶阻力问题比较复杂,在理论计算时常需作某些简化假定,故所得结果与实际到底存在多大差别,需要用船模实验结果进行检验,或进行适当的修正。
综上所述,船模阻力实验是目前研究船舶阻力最基本有效的方法。
一、实验目的和内容1. 测定船模阻力与速度之间的关系。
2. 求出实船阻力(有效功率)与航速之间的关系。
二、实验方法图1为我校试验水池简图。
拖车可沿水池两旁的轨道上行走;拖车上装置有控制、驱动系统及有关测量仪器,并载若干名试验人员。
图2表示船模与拖车连接的情况,拖曳船模的钢丝通过导轮与阻力仪连接。
图1试验时,预先根据实船速度Vs ,按相似定律确定船模速度Vm ,λ/s m V V =式中MSL L =λ,称缩尺比。
图2拖车起动,并通过刹船架夹住船模一起加速,当拖车达到所要求速度下等速前进时,松开刹船架,此时拖车通过钢丝拖着船模前进,由阻力仪器测出钢丝拖力(也就是船模阻力Rtm ),并同时用测速仪测量拖车速度(也就是船模速度Vm )。
记录完毕,刹住船模,拖车减速,刹车,退回原处,这就完成了一个速度点的试验。
重复上述过程,直到得到完整的一条阻力曲线。
三、由船模试验结果换算到实船阻力的方法由船舶阻力理论已知,船舶在航行时遭受的总阻力可分为摩擦阻力、形状阻力和兴波阻力。
船模试验只能测得其总阻力。
船模阻力实验报告
近日,我们小组开展了一项有趣的船模阻力实验。
这项实验主
要是想通过测量不同类型的船模在水中的阻力,来探究船模的设
计和制造中应当注意的问题,从而应用于实际的船舶生产中。
首先,我们选取了几种不同类型的船模进行实验。
包括传统的
帆船、快艇、游艇以及赛艇等。
为了保证实验的准确性和科学性,我们将每个船模在水中的阻力分别记录了5次,然后取平均值作
为最终的实验结果。
实验中,我们还针对水温、水流等因素进行
了一系列的控制,以确保每次实验的环境相同。
经过实验,我们发现不同类型的船模在水中的阻力是有很大差
别的。
其中,游艇和赛艇的阻力最小,而帆船和快艇的阻力则较大。
特别是帆船,其阻力最大,可能与其较大的船体面积和宽体
船身有关。
此外,我们还观察到,在相同类型的船模中,设计和
制造的差异也会影响其在水中的阻力,这表明了在选择和制造船
模时需要考虑到诸多的因素。
我们还了解到,阻力是造成船舶浪费能量和燃料的主要因素之一。
因此,在实际的船舶生产中,减小阻力是船舶设计中的一个
重要目标,尤其是在当下环保、节能的理念越来越受到关注的背
景下。
通过我们的实验,也可以为船舶设计者提供一些指导和参考,帮助他们更好地把握船舶设计中的阻力问题。
最后,我们还对实验结果进行了分析和总结,并对未来的实验展开了进一步的规划和研究。
我们希望,通过这一项船模阻力实验,能够为我们更深入地了解和探究船舶设计和制造中的问题和挑战,为船舶生产的发展做出一点小小的贡献。