射频通信电路第一章传输线变压器阻抗变换1-3
- 格式:ppt
- 大小:437.00 KB
- 文档页数:10
基于射频宽带功放电路特性的改善及其实现赵文刚;钟乐海【摘要】为了加强信息的保密性,这就要求通信产品在变频上要达到一定的速度.而且在宽带放大电路的设计中,往往都是以牺牲功率增益来换取宽频带的功率增益的平坦特性,本设计除了满足增益平坦和效率外,还重点考虑了波段转换的速度以及体积、受环境影响的大小等要求.调试及试用表明,该放大器工作稳定、性能可靠,已成功应用于通讯实践.【期刊名称】《现代电子技术》【年(卷),期】2007(030)021【总页数】4页(P34-37)【关键词】功率放大器;功率增益;宽频带;传输线变压器【作者】赵文刚;钟乐海【作者单位】西华师范大学,计算机学院,四川,南充,637002;西华师范大学,计算机学院,四川,南充,637002【正文语种】中文【中图分类】TN92随着现代通信技术的发展,功率放大器已成为无线通信系统中一个不可或缺的部分。
宽频带高速跳转技术、宽频带扩频技术对固态发射机提出了更高的要求,即射频功率放大器宽带化。
宽带大功率产生技术已成为现代通信对抗的关键技术,即使接收机构性能再好,能准确跟踪瞄准目标,但最终干扰效果的实现还须依赖于发出的大功率信号来压制,其重要性不言而喻。
目前,正朝着多载波、大容量、高速度方向迅猛发展的CDMA,LMDS,WLAN等无线通信系统均对功率放大器提出了很高的要求。
以前,我国干扰机的大功率固态功放一直靠进口,但随着技术的进步和器件制造水平的提高,大功率的自制或部分自制成为可能。
应某应用要求,笔者设计了功率≥5 W的射频宽带功率放大器,并成功应用于实践。
1 设计方案1.1 主要技术指标工作频段:30~90 MHz;输出功率:≥5 W(最大输入12 mW);功率增益:≥40 dB;ALC响应时间:≤8 μs;增益平坦度:≤4 dB;电源电压:+10~+15 V;杂波抑制:≤-52 dBc;接收通道30 MHz高通抑制:≥50 dBc(≤18 MHz处);波段控制:波段分30~43 MHz,43~62 MHz,62~90 MHz共3段,共3根控制线,选通路控制线加5 V,截止路(另两路)加+35 V (5 V时电流≤150 mA,+35 V时电流≤5 mA);隔离度≥46 dB;输出检测:5 W时,正向检测值≥1.2 V,带内波动≤0.35 dB;工作温度:-40~+65 ℃。
射频通信电路复习提纲第一章,选频回路与阻抗变换1,掌握并联谐振回路的阻抗表达式,幅频特性()ϕω、谐Z jω、相频特性()Z 振频率ω、Q值、通频带BW0.72,掌握变压器、电容、电感分压电路的阻抗变换特性。
3,掌握L型阻抗变换网络计算。
理解T型、 型阻抗变换网络的概念。
,了解传输线和反射系数概念、Smith圆图的概念,能用Smith圆图设计阻抗匹配网络。
5,掌握传输线变压器的概念和基本特性(能量传递、电平隔离),能用传输线变压器实现宽带阻抗变换。
6,了解集中选频滤波器和集成电感的原理与应用。
第二章,噪声与非线性失真1,掌握电阻的热噪声计算方法及噪声等效电路,了解BJT和FET晶体管的噪声模型。
2,掌握噪声系数的定义和简单电路的噪声系数计算方法。
掌握等效噪声温度的定义及其与噪声系数的关系。
3,掌握多级放大器噪声系数的计算方法,了解改善系统噪声系数的方法。
4,了解非线性电路的定义和主要特征。
了解阻塞、交调、互调的出现原因和现象,了解1dB压缩点、IIP3的定义和计算方法。
5,掌握幂级数分析法及其应用(条件和实例)。
6,掌握折线分析法及其应用(条件和实例)。
7,掌握开关函数分析法及其应用(条件和实例)。
8,掌握时变跨导分析法及其应用(条件和实例)。
9,掌握模拟乘法器的概念和典型用途(运算、变增益放大、调幅及检波、混频、鉴相)10,了解差分对电路的传递特性。
掌握双差分模拟乘法器的电路、传递特性、小信号和大信号下的近似特性、扩展线性范围的方法。
11,掌握灵敏度的定义和求法。
掌握动态范围的定义和求法。
第三章,调制和解调1,掌握调幅信号的基本特性(AM、DSB信号的表达式、波形、频谱、带宽、信号功率;SSB信号的表达式、频谱、带宽、信号功率)。
AM、DSB、SSB信号的调制与解调方法原理方框图(SSB:滤波法、矢量合成法)。
2,掌握FM信号和PM信号的定义、表达式(m f、 m)、波形特征、频谱特征(J n(m))、带宽。
传输线阻抗变换器又称为传输线变压器,它以传输线绕制在磁芯上而得名。
这种阻抗变换器兼备了集总参数变压器和传输线的优点,因而可以做得体积小、功率容量大、工作频带相当宽(f max:f min>10)。
它除具有阻抗变换作用外,采用适当的连接方式还可以完成平衡一平衡、不平衡一不平衡、平衡一不平衡、不平衡一平衡的转换,在长、中、短波及超短波波段获得了广泛的应用。
基本类型的传输线变压器阻抗变换比为1:N2或N2:1,N为整数。
通常是用一对双线传输线或扭纹的三线传输线绕在一个磁芯上,或是用两对传输线分别绕在两个磁芯上,经过适当的连接得到不同阻抗变换比的平衡或不平衡输出的阻抗变换器,其工作原理基本相同,本节只对典型的传输线变压器进行分析。
一、1:1不平衡一平衡传输线变压器图6—22为1:1不平衡一平衡传输线变压器的结构示意图,它是将一对传输线绕制在一个适当型号的磁芯上而构成。
为改善低频端特性,有时又增加一个平衡绕组,如图中的“5—6”绕组。
图6—23为其原理图。
设传输线特性阻抗为Z C,其输出端接负载阻抗R L,输入端接信号源(E为电动势,R g 为内阻)。
V l、I1和V2、I2分别表示输入和输出端复数电压、电流。
令负载开路时的初级阻抗以Z p(ω)表示,此时,绕组AO’中的电流为称为激磁电流或磁化电流。
在有载的情况下,由于“1—2”和“3—4”是一对紧耦合的平衡传输线,因此,“3—4”线将通过与“1—2”线的耦合从电源获取电流。
若耦合电流为I C,则由传输线方程可得其中,l为传输线长度,β为相位常数。
因为电源输出电流I1,是激磁电流I P,与耦合电流I C之和,故有I C=I1-I P。
由以上关系式,可以求出V l、I1和V2、I2的方程式为其中上式表明,一个1:1不平衡一平衡传输线变压器的传输矩阵[A],是由3个子矩阵组成的:第一个是1:1理想变压器的传输矩阵,第二个是阻抗为Z P的四端网络的传输矩阵,第三个是特性阻抗为Z C、长度为l的传输线的传输矩阵。