共点力作用下物体的平衡典型例题汇总
- 格式:doc
- 大小:668.67 KB
- 文档页数:26
共点力的平衡知识点总结与典例共点力的平衡是指在一个物体上作用的所有力的合力为零时,物体处于静止状态或者匀速直线运动状态。
共点力的平衡是力学中的重要概念,在解决物体平衡问题时经常用到。
下面对共点力的平衡进行知识点总结,并给出一些典型的例题。
1.共点力的合力为零时物体保持静止。
当一个物体受到多个力的作用,且这些力的合力为零时,物体将保持静止状态。
2.共点力的合力为零时物体保持匀速直线运动。
当一个物体受到多个力的作用,且这些力的合力为零时,物体将保持匀速直线运动状态。
3.共点力的平衡条件。
对于共点力的平衡,以下两个条件必须同时满足:a.所有作用在物体上的力的合力为零,即ΣF=0。
b.所有作用在物体上的力的合力矩为零,即Στ=0。
4. 典例1:两个力共点平衡问题。
一个质量为2kg的物体在水平桌面上,受到一位人拉力为20N的作用和摩擦力15N的作用,求桌面对物体的支持力大小和方向。
解答:根据共点力的平衡条件,ΣF=0,可以得到:支持力-20N-15N=0。
解方程可得支持力为35N。
由于物体在水平桌面上静止,支持力的方向垂直于桌面向上。
5. 典例2:三个力共点平衡问题。
一个质量为5kg的物体静止在斜面上,斜面的倾角为30°,受到向上的支持力10N和重力作用,求斜面对物体的摩擦力大小和方向。
解答:根据共点力的平衡条件,ΣF = 0,可以得到:摩擦力 + 10N - 5kg * 9.8m/s² * sin30° = 0。
解方程可得摩擦力为24.5N。
由于物体静止在斜面上,摩擦力的方向与斜面平行向上。
6. 典例3:多个力共点平衡问题。
一个质量为10kg的物体静止在无摩擦的水平地面上,受到斜向上拉力30N、斜向下拉力40N和重力作用,求地面对物体的摩擦力大小和方向。
解答:根据共点力的平衡条件,ΣF = 0,可以得到:摩擦力 -30cosθ + 40cosθ - 10kg * 9.8m/s² = 0。
共点力平衡专题【典型例题】题型一:三力平衡例1、如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是( ) A .mgcos α B .mgtan α C.mg/cos α D .mg 解法一:(正交分解法):对小球受力分析如图甲所示,小球静止,处于平衡状态,沿水平和竖直方向建立坐标系,将FN2正交分解,列平衡方程为F N1=F N2sin α mg =F N2cos α可得:球对挡板的压力F N1′=F N1=mgtan α,所以B 正确. 解法二:(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg 平衡,即等大反向.解三角形可得:F N1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α。
解法三:(效果分解法):小球所受的重力产生垂直板方向挤压竖直板的效果和垂直斜面方向挤压斜面的效果,将重力G 按效果分解为如上图丙中所示的两分力G 1和G 2,解三角形可得:F N1=G 1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α.所以B 正确.解法四:(三角形法则):如右图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mgtan α,故挡板受压力F N1′=F N1=mgtan α。
所以B 正确. 题型二:动态平衡问题例2、如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球B,整个装置处于静止状态。
设墙壁对B 的压力为F1,A 对B 的压力为F2,则若把A 向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是( )A .F1减小B .F1增大C .F2增大D .F2减小 方法一 解析法:以球B 为研究对象,受力分析如图甲所示,根据合成法,可得出F1=Gtan θ,F2=Gcos θ,当A 向右移动少许后,θ减小,则F1减小,F2减小。
1. 如图所示,在一细绳B 点系住一重物,细绳AB 、BC 两端分别固定在竖直墙面上,使得AB 保持水平,BC 与水平方向成30º角,已知三段细绳最多都只能承受200N 的拉力;那么为使三段细绳都不断裂,BD 段最多能悬挂多重的物体? 1.100N2.甲、乙两球的半径均为R ,质量相等,用轻绳悬挂起来,如图所示,已知AB 段绳的拉力为F=120N ,绳BD=BC=R ,求:(1)绳BD 和BC 受到的拉力T 。
(2) 甲、乙两球间的相互作用力N 的大小。
69.28N 34.643.如图所示,A 、B 都是重物,A 被绕过小滑轮P 的细线所悬挂,B 放在粗糙的水平桌面上.滑轮P 被一根斜短线系于天花板上的O 点,O ′是三根细线的结点,细线bO ′水平拉着物体B ,cO ′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若悬挂小滑轮的斜线中的拉力是F =203N ,∠cO′a=120°,重力加速度g 取10m/s2,则下列说法正确的是 (BC ) A .弹簧的弹力为20N B .重物A 的质量为2kgC .桌面对物体B 的摩擦力为103ND .细线OP 与竖直方向的夹角为60°4.如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g 。
若接触面间的摩擦力忽略不计,求石块侧面所受弹力的大小为多少?解:楔形石块受力如图,根据力的合成可得:2cos(90)mg F α=⨯-,所以02cos(90)2sin mg mgF αα==-5、质量为kg m 4=的物体放置在粗糙的水平面上,如图在水平向右的N F 201=的作用下使其向右匀速运动。
当改为斜向下的2F 作用时仍然可以使物体向右匀速运动,已知2F 与水平方向之间的夹角为037=α。
(COS37°=0.8, Sin37°=0.6,g=10m/s2)试求: (1)2F 的大小?(2)在第(1)问的前提下,若该物体匀速运动的初速度是10 m/s,要使物体不撞到前方30m 处的障碍物,力2F 最多作用多长的时间?(若物体在水平面上运动,只受滑动摩擦阻力时,其加速度大小为5 m/s2)(1)以物体为研究对象,受力分析建立如图直角坐标系,根据平衡条件,得N f mg N f F μ==-=-001 联立①②③代入数据 解得,5.0=μ 当施加2F 力时,对30A C B D ααmfxα 2FNy Gv v1F2F α物体受力分析如图所示Nf mg F N f F μαα==--=-0sin 0cos 22 联立⑤⑥⑦代入数据 解得 N F 402=(2) 要求物体不撞到障碍物上力2F 最多作用的时间,即力2F 作用t 时间后,撤去2F 物体减速至障碍物处刚好静止.撤去2F 前物体运动距离 x1=vt=10t 撤去2F 后物体运动距离 ma v x 1010100222===又 x1 + x2 = x, 即 10t + 10 =30, 所以t=2s 6.如图所示,物体m 与天花板间的动摩擦因数为μ,当力F 与水平方向夹角为θ时,物体沿天花板匀速运动. 画出物体的受力图,并求力F 的大小. FCos θ=FfFSin θ=FN+GF=μmg/(μSin θ-Cos θ)7.如图所示, 质量为m 的物块在质量为M 的木板上滑行, 木板与地面间摩擦系数为μ1, 物块与木板间摩擦系数为μ2, 已知木板处于静止状态, 那么木板所受地面摩擦力的大小是A .μ1Mg B. μ2mg C .μ1(m+M )g D .μ1Mg+μ2mgB 10.如图所示装置,两物体质量分别为m1、m2,悬点A 、B 间的距离远大于滑轮的直径(即滑轮的大小可忽略不计),不计一切摩擦及滑轮的重力,装置处于静止状态,则A .m2可能大于m1B .m2一定大于m1/2C .m2可能等于m1D .θ1一定等于θ2 ABCD8.所受重力G1=8 N 的砝码悬挂在绳PA 和PB 的结点上.PA 偏离竖直方向37°角,PB 在水平方向,且连在所受重力为G2=100 N 的木块上,木块静止于倾角为37°的斜面上,如图12所示,试求: (1)木块与斜面间的摩擦力;(2)木块所受斜面的弹力. 解析:如图甲所示分析P 点受力,由平衡条件可得: FA cos37°=G 1FA sin37°=FB 可解得:FB =6 N再分析G2的受力情况如图乙所示.由物体的平衡条件可得: Ff =G2 sin37°+FB ′cos37°FN+FB′ sin37°=G2 cos37° FB′=FB 可求得:Ff =64.8 N FN =76.4 N.答案:(1)64.8 N ,方向沿斜面向上 (2)76.4 N ,垂直斜面向上 θ F F f θ F F N G θ1 θ2m 1m 2A B9、质量m =15kg 的光滑球A 悬空靠在墙和木块B 之间,木块B 的质量为M =150kg ,且静止在水平地板上,如图所示,取g =10m/s2,求:⑴墙和木块B 受到的球的压力各为多少?⑵水平地板所受的压力和木块B 所受的摩擦力各为多少?⑴小球A 和木块B 受力分析如图所示,用N1、N2、N3、N1/分别表示木块对A 的弹力、墙壁对A 的支持力、地面对木块的支持力以及球A 对木块B 的压力。
共点力作用下物体的平衡典型例题[例1]质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小,如图1(甲)。
N′=mg/cosθ[例2]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。
N1↓,N2↓[例3]如图1所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?[例4]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;40N;(2)物体B与地面间的摩擦力;34.6N;(3)细绳CO受到的拉力。
69.3例5]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少? T≈8N(2)圆环将要开始滑动时,重物G的质量是多少?m G g=Tctgθ,m G=0.6kg。
(3)角φ多大?直角例6]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。
∴Ф=30°,θ=30°[例7]如图1,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
【例8】如图1所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?α增大,所以F增大,而T 减小。
小专题(二) 共点力平衡的几类典型问题1.(人教版必修第一册第77页第2题改编)如图甲,一台空调外机用两个三角形支架固定在外墙上,空调外机的重心恰好在支架水平横梁OA 和斜梁OB的连接点O的上方,图乙为示意图。
如果把斜梁加长一点,仍保持连接点O的位置不变,横梁仍然水平,这时OA对O点的作用力F1和OB对O点的作用力F2的变化是( )A.F1变大,F2变大B.F1变小,F2变小C.F1变大,F2变小D.F1变小,F2变大2.(2020·全国Ⅲ卷,17)如图,悬挂甲物体的细线拴牢在一不可伸长的轻质细绳上O点处;绳的一端固定在墙上,另一端通过光滑定滑轮与物体乙相连。
甲、乙两物体质量相等。
系统平衡时,O点两侧绳与竖直方向的夹角分别为α和β。
若α=70°,则β等于( )A.45°B.55°C.60°D.70°3.如图甲所示, 两小球通过两根轻绳连接并悬挂于O点,已知两轻绳OA和AB的长度之比为√3∶1,A、B处两小球质量分别为2m和m。
现对A、B处两小球分别施加水平向右的力F1和水平向左的力F2,两球恰好处于如图乙的位置静止,此时B处小球恰好在悬点O的正下方,轻绳OA与竖直方向成30°角,则( )A.F1=F2B.F1=√3F2C.F1=2F2D.F1=3F24.(粤教版必修第一册第91页第4题改编)如图所示,一根粗糙的水平横杆上套有甲、乙两个轻环,系在两环上的等长细绳拴住的书本处于静止状态。
现将两环距离变小后书本仍处于静止状态,则( )A.杆对甲环的支持力变大B.乙环对杆的摩擦力变小C.杆对甲环的力不变D.与乙环相连的细绳对书本的拉力变大5.飞艇常常用于执行扫雷、空中预警、电子干扰等多项作战任务。
如图所示为飞艇拖拽扫雷具扫除水雷的模拟图。
当飞艇匀速飞行时,绳子与竖直方向恒成θ角。
已知扫雷具质量为m,重力加速度为g,扫雷具所受浮力不能忽略,下列说法正确的是( )A.扫雷具受3个力作用B.绳子拉力大小为mg cosθC.海水对扫雷具作用力的水平分力小于绳子拉力D.绳子拉力一定大于mg6.重力都为G 的两个小球A 和B 用三段轻绳连接后悬挂在O 点(如图所示),O 、B 间的绳子长度是A 、B 间的绳子长度的2倍,将一个拉力F 作用到小球B 上,使三段轻绳都伸直,且O 、A 间和A 、B 间的两段绳子分别处于竖直和水平方向上,则拉力F 的最小值为( )A.12GB.√33G C.G D.2√33G 7.如图所示,竖直放置的光滑圆环,顶端D 点处固定一定滑轮(大小忽略),圆环两侧套着质量分别为m 1、m 2的两小球甲、乙,两小球用轻绳绕过定滑轮相连,并处于静止状态,甲、乙连线过圆心O 点,且与右侧绳的夹角为θ。
专题 共点力平衡的七大题型目录一、三类常考的“三力静态平衡”问题 (1)热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。
(1)热点题型二 三个力互相不垂直,但夹角(方向)已知 。
(3)热点题型三 三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。
(4)二、三类常考的“动态平衡”模型 (6)热点题型四 矢量三角形法类 (6)热点题型五 相似三角形法类 (8)热点题型六 单位圆或正弦定理发类型 (9)热点题型七 衣钩、滑环模型 (11)【题型归纳】 一、三类常考的“三力静态平衡”问题热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。
解决平衡问题常用的方法有以下五种①力的合成法②力的正交分解法③正弦定理法④相似三角形法⑤矢量三角形图解法【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。
设滑块所受支持力为N F 。
OF 与水平方向的夹角为θ。
下列关系正确的是( )A .θtan mg F =B .θtan mg F =C . θtan mg F N =D .θtan mg F N =【答案】 A 解法一 力的合成法滑块受力如图甲,由平衡条件知:错误!=tan θ⇒F =错误!,F N =错误!。
解法二 力的分解法将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ,联立解得:F =错误!,F N =错误!。
解法三 力的三角形法(正弦定理)如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =错误!,F N =错误!。
【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易.【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。
已知物块与斜面之间的动摩擦因数为3,重力加速度取10m/s 2.若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( )A .150kgB .1003kgC .200 kgD .2003kg 【答案】A 【解析】T =f +mg sin θ,f =μN ,N =mg cosθ,带入数据解得:m =150kg ,故A 选项符合题意。
一、选择题1.如图所示,在倾角为θ的斜面上,放着一个质量为m 的光滑小球,小球被竖直的木板挡住,则小球对木板的压力大小为( )A .mg cos θB .mg tan θC .mg cos θD .mg tan θ 2.如图2所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗 口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比m2m1为A.33B.23C.32D.223.一只蚂蚁从半球形小碗内的最低点沿碗壁向上缓慢爬行,在其滑落之前的爬行过程中受力情况是( )A .弹力逐渐增大B .摩擦力逐渐增大C .摩擦力逐渐减小D .碗对蚂蚁的作用力逐渐增大4.如图所示,一箱苹果沿着倾角为θ的斜面,以速度v 匀速下滑,在箱子中夹有一只质量为m 的苹果,它受到周围苹果对它作用力的方向是( )A .沿斜面向上B .沿斜面向下C .竖直向上D .垂直斜面向上5.如图所示,质量m 1=10 kg 和m 2=30 kg 的两物体,叠放在动摩擦因数为0.50的粗糙水平地面上,一处于水平位置的轻弹簧,劲度系数为k =250 N/m ,一端固定于墙壁,另一端与质量为m 1的物体相连,弹簧处于自然状态,现用一水平推力F 作用于质量为m 2的物体上,使它缓慢地向墙壁一侧移动,当移动0.40 m 时,两物体间开始相对滑动,这时水平推力F 的大小为( )A .100 NB .300 NC .200 ND .250 N6.如图5所示,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( )A .L +μm2g kB .L +μm1+m2g kC .2L +μ2m1+m2g kD .2L +2μm1+m2g k7.如图6所示,a 、b 是两个位于固定斜面上的完全相同的正方形物块,它们在水平方向的外力F 的作用下处于静止状态.已知a 、b 与斜面的接触面都是光滑的,则下列说法正确的是( )A .物块a 所受的合外力大于物块b 所受的合外力B .物块a 对斜面的压力大于物块b 对斜面的压力C .物块a 、b 间的相互作用力等于FD .物块a 对斜面的压力等于物块b 对斜面的压力8.如图所示,斜面倾角为θ(θ为锐角)两个物体A 和B 相接触放在粗糙的斜面上,当他们加速下滑时,下面对A 、B 之间相互作用力的析正确的是( )A .当mB >m A 时,A 、B 之间有相互作用力;当m B ≤m A 时,A 、B 之 图6间无相互作用力B .设两物体与斜面的动摩擦因数分别为μA 、μB ,当μA >μB 时,A 、B 之间有相互作用力;当μA ≤μB 时,A 、B 之间没有相互作用力C .设A 、B 与斜面摩擦力分别为F f A 、F f B ,当F f A >F f B 时,A 、B 间有相互作用力;当F f A ≤F F b时,A 、B 之间没有相互作用力D .A 、B 间是否有相互作用力跟斜面倾角θ无关9.(哈尔滨第学)如图所示,在水平力F 作用下,木块A 、B 均保持静止.若木块A 与B 的接触面是水平的,且F ≠0.则关于木块B 的受力个数可能为( )A .3个或4个B .3个或5个C .4个或5个D .4个或6个10.如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P 连接,P 的斜面与固定挡板MN 接触且处于静止状态,则斜面体P 此刻所受的外力个数有可能为( )A .2个 B.3个C .4个 D.5个11.(2010·淄博模拟)如图所示,物块A 放在倾斜的木板上,已知木板的倾角α分别为30°和45°时物块所受摩擦力的大小恰好相同,则物块和木板间的动摩擦因数为( ) A.12 B.32C.22 D.5212.(2010·黄冈月考)如图5所示,质量为m 的两个球A 、B 固定在杆的两端,将其放入光滑的半圆形碗中,杆的长度等于碗的半径,当杆与碗的竖直半径垂直时,两球刚好能平衡,则杆对小球的作用力为( )A.33mg B.233mgC.32mg D.2mg 13.(2010·湖南师大附中模拟)如图所示,A 、B 两木块放在水平面上,它们之间用细线相连,两次连接情况中细线倾斜方向不同但倾角一样,两木块与水平面间的动摩擦因数相同.先后用水平力F 1和F 2拉着A 、B 一起匀速运动,则( )A.F 1≠F 2B.F 1=F 2C.F T1>F T2D.F T1=F T214.(2010·三十二校联考)如图所示,质量为m 的物体用细绳栓住放在水平粗糙传送带上,物体距传送带左端距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2的速度做逆时针转动时(v 1<v 2),绳中的拉力分别为F 1、F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A.F 1<F 2B.F 1=F 2C.t 1>t 2D.t 1<t 215.如图所示,固定在水平面上的斜面倾角为θ,长方体木块A 的质量为M ,其PQ 面上钉着一枚小钉子,质量为m 的小球B 通过一细线与小钉子相连接,细线与斜面垂直,以下说法正确的是( )A.若木块匀速下滑,则小球对木块的压力为零B.若木块匀速下滑,则小球对木块的压力为mg sin θC.若木块匀加速自由下滑,则小球对木块的压力为零D.若木块匀加速自由下滑,则小球对木块的压力为mg sin θ16.(2009·北京高考)如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力和滑动摩擦力大小相等,重力加速度为g ,则( )A.将滑块由静止释放,如果μ>tan θ,滑块将下滑B.给滑块沿斜面向下的初速度,如果μ<tanθ,滑块将减速下滑C.用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tanθ,拉力大小应是2mg sinθD.用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tanθ,拉力大小应是mg sinθ17.质细线把两个质量未知的小球悬挂起来,如图2-3-17(甲)所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡,表示平衡状态的图可能是图中的18.如图所示,A、B两球用劲度系数为k1的轻弹簧相连,B球用长为L的细线悬于O点,A球固定在O点正下方,且O、A间的距离恰为L,此时绳子所受的拉力为F1,现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小关系为A.F1<F2B.F1>F2C.F1=F2D.因k1、k2大小关系未知,故无法确定19.(2010·安徽合肥一模)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态,若把A向右移动少许后,它们仍处于静止状态,则A.B对墙的压力增大B.A与B之间的作用力增大C.地面对A的摩擦力减小D.A对地面的压力减小20.(2009·江苏高考)用一根长 1 m的轻质细绳将一幅质量为 1 kg的画框对称悬挂在墙壁上(如图.已知绳能承受的最大张力为10 N.为使绳不断裂,画框上两个挂钉的间距最大为(g取10 m/s2)A.32mB.22mC.12mD.34m22.(长春二模)如图所示,质量为m的正方体和质量为M的正方体放在两竖直墙和水平面间,处于静止状态.m与M 相接触面与竖直方向的夹角为α,若不计一切摩擦,下列说法正确的是( )A.水平面对正方体M的弹力大小大于(M+m)gB.水平面对正方体M的弹力大小为(M+m)g·cot αC.墙面对正方体M的弹力大小为mg cot αD.墙面对正方体M的弹力大小为mg tan α23.(不定项选择)如图所示,质量为m的质点,与三根相同的螺旋形轻弹簧相连.静止时,弹簧c沿竖直方向,相邻两弹簧间的夹角均为120°.已知弹簧a、b对质点的作用力大小均为F,则弹簧c对质点的作用力大小可能为( )A.F B.F+mgC.F-mg D.mg-F24.如图所示,在倾角为θ的粗糙斜面上,有一个质量为m的物体被水平力F推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tanθ,若物体恰好不下滑,则推力F为多少?若物体恰好不上滑,则推力F为多少?(最大静摩擦力等于滑动摩擦力)25.(2010·齐河月考)所受重力G1=8 N的砝码悬挂在绳PA和PB的结点上.PA偏离竖直方向37°角,PB在水平方向,且连在所受重力为G2=100 N的木块上,木块静止于倾角为37°的斜面上,如图所示,试求:(1)木块与斜面间的摩擦力;(2)木块所受斜面的弹力.26.如图所示,板A的质量为m,滑块B的质量为2m,板A用绳拴住,绳与斜面平行,滑块B沿倾角为α的斜面在A板的中间一段匀速下滑,若A、B之间以及B与斜面间的动摩擦因数相同,求动摩擦因数μ。
共点力平衡练习题共点力平衡练习题在物理学中,力的平衡是一个重要的概念。
当多个力作用于一个物体时,如果这些力的合力为零,那么物体将保持静止或匀速直线运动。
这种平衡状态被称为力的平衡。
共点力平衡是指多个力作用于一个物体的同一点上,使得物体保持平衡。
下面我们来看一些共点力平衡的练习题。
1. 一根绳子两端分别挂着两个重物,绳子呈水平状态,重物的质量分别为10kg 和20kg。
求绳子对两个重物的拉力。
解析:由于绳子是水平的,所以绳子对两个重物的拉力大小相等。
设绳子对两个重物的拉力分别为F1和F2,根据牛顿第三定律,F1 = F2。
又因为重物的质量分别为10kg和20kg,所以F1 + F2 = 10g + 20g = 300N。
解方程得到F1 = F2 = 150N。
2. 一个物体静止在倾斜角为30°的斜面上,斜面的摩擦系数为0.2。
求斜面对物体的支持力和摩擦力。
解析:斜面对物体的重力可以分解为两个分力,一个垂直于斜面向下的分力mgcosθ,一个平行于斜面向上的分力mgsinθ。
斜面对物体的支持力等于垂直于斜面的分力mgcosθ,即F支持= mgcosθ。
根据静摩擦力的计算公式,摩擦力等于斜面对物体的支持力乘以摩擦系数,即F摩擦= μF支持。
代入数值计算得到F支持= 10gcos30° = 86.6N,F摩擦= 0.2 × 86.6N = 17.3N。
3. 一个物体静止在水平地面上,受到一个向上的拉力和一个向下的重力。
已知拉力的大小为100N,重力的大小为200N。
求物体对地面的摩擦力。
解析:物体受到的合力等于拉力减去重力,即F合 = F拉 - F重 = 100N - 200N= -100N。
由于物体静止在水平地面上,所以物体对地面的摩擦力的大小等于合力的大小,即F摩擦 = 100N。
4. 一个物体静止在竖直墙壁上,受到一个向下的重力和一个向左的拉力。
已知重力的大小为300N,拉力的大小为200N。
共点力作用下物体的平衡»知识点1:平衡状态和平衡条件✍基础知识:1.平衡状态⑴共点力(复习回顾):几个力如果作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.⑵平衡状态:一个物体在共点力的作用下,如果保持或者做,我们就说这个物体处于平衡状态.其运动学特征是加速度为.2.共点力作用下物体的平衡条件:物体所受合外力为.☞典型例题1.例题:下列关于质点处于平衡状态的论述,正确的是.A:质点一定不受力的作用B:质点一定只受一个力的作用C:质点一定没有速度D:质点一定保持相对静止✎巩固练习1.下列物体中处于平衡状态的是()A.站在自动扶梯上匀速上升的人B.沿光滑斜面下滑的物体C.在平直路面上匀速行驶的汽车D.做自由落体运动的物体在刚开始下落的瞬间»知识点2:合成法解决平衡问题✍基础知识:1.物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力大小,方向.2.物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成封闭三角形,即表示这三个力的矢量首尾相接,恰能组成一个封闭三角形.☞典型例题2.如图所示,一个倾角为30°的斜面上,一个质量为12kg的铁块静止,试求铁块受到的摩擦力和支持力.(g=10 m/s2)✎巩固练习2.用细线把一个小球挂在光滑墙壁上的A 点,小球与墙壁的接触点为B,如图所示.小球的质量为m,细绳的质量不计,悬线与墙壁的夹角为θ.求悬线对球的拉力和墙壁对球的支持力.✎巩固练习3. 如图所示,在倾角为 的斜面上有一块竖直放置的挡板,在挡板和斜面间搁有一个重为G 的光滑圆球,试求该斜面和挡板对球的支持力大小.»知识点3:平衡物体的临界问题☞典型例题1.如图,轻绳OB 一端系在天花板上,与竖直线夹角37°,轻绳OA 水平,一端系在墙上,O 点处挂一重为40N 的物体.(cos37°=0.8, sin37°=0.6)⑴求AO 、BO 的拉力各为多大?⑵若AO 、BO 、CO 所能承受的最大拉力均为100N ,则所吊重物重力最大不能超过多大?✎巩固练习1.三段不可伸长的细绳子OA 、OB 、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OA 是水平的,A 、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳()A .必定是OAB .必定是OBC .必定是OCD .可能是OB ,也可能是OCA»知识点4:正交分解法解决平衡问题✍基础知识:平衡条件的数学表达式为:F 合=或F x 合=F y 合=,其中F x 合为物体在x 轴方向上所受的合外力,F y 合为物体在y 轴方向上所受的合外力.☞典型例题2.质量为30 kg 的小孩坐在10kg 的雪橇上,大人用与水平方向成37°斜向上大小为100N 的拉力拉雪橇,使雪橇沿水平地面做匀速运动(sin37°=0.6,cos37°=0.8,g 取10 N/kg ),求:⑴地面对雪橇的支持力大小; ⑵雪橇与水平地面的动摩擦因数的大小✎巩固练习2.下如图所示,质量为m 横截面为直角三角形的物块ABC ,靠在竖直墙面上,∠ABC =α,F 是垂直于斜面BC 的推力.现物块静止不动,则摩擦力的大小为____________.✎巩固练习3.质量为m 的木块在大小为F 的力作用下沿粗糙竖直墙向上匀速直线运动,求墙与木块间的动摩擦因数.»知识点5:图解法解决动态平衡问题☞典型例题1.细绳AO 、BO 等长,A 点固定不动,在手持B 点沿圆弧向C 点缓慢运动过程中,绳BO 的张力将() A .不断变大 B .不断变小C .先变小再变大D .先变大再变小β✎巩固练习1.重G 的光滑小球静止在固定斜面和竖直挡板之间.若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?✎巩固练习2.电灯悬挂于两墙之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时( )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大✎巩固练习3.在共点力的合成实验中,如图,使弹簧秤b 按图示的位置开始顺时针方向缓慢90º角,在这个过程中,保持O 点位置不动,a 弹簧秤的拉伸方向不变,则整个过程中关于a 、b 弹簧的读数变化是( )A .a 增大,b 减小B .a 减小,b 减小C .a 减小,b 先减小后增大D .a 先减小后增大»知识点6:解析法解决动态平衡问题☞典型例题2.如图所示,一物体放置在倾斜的木板上,当木板与地面间的夹角缓慢增大时,物体始终与木板相对静止,试分析此过程中木板对小物块的:①支持力大小如何变化. ②摩擦力大小如何变化. ③物块所受合力如何变化.✎巩固练习4.放在水平地面上的物体受到一个与水平方向成α角斜向下的力F 的作用在水平面上运动.如图,如果保持力F 的大小不变,而使力F 与水平方向的夹角α变小,那么,物体所受地面的支持力F N 和摩擦力f 的变化情况是()A .F N 变小,f 变大B .F N 变大,f 变小C .F N 变小,f 变小D .F N 变大,f 变大»知识点7:相似三角形法解决平衡问题☞典型例题1.如图所示,用细线吊着的小球B 放在光滑的大球面上,细线的另一端跨过光滑的小滑轮A 由人拉着.已知小球的重量为G ,小滑轮A 处在大球面的正上方.人以拉力F 缓慢地使小球沿大球面逐渐上升的过程中,拉力F 、大球面对小球的支持力F N 的变化情况是:( )A .F 变大,F N 变大B .F 变小,F N 变小C .F 变大,F N 不变D .F 变小,F N 不变✎巩固练习1.为了用起重机缓慢吊起一均匀的钢梁,现用一根绳索拴牢此钢梁的两端,使起重机的吊钩钩在绳索的中点处,如图.若钢梁的长为L ,重为G ,绳索所能承受的最大拉力为F m ,则绳索至少为多长?(绳索重不计)»知识点8:共点力平衡中的连接体(叠加体)问题☞典型例题2.质量为M 的斜劈放在粗糙水平地面上,斜劈上又放有一个质量为m 的物块,两者均静止.以下说法中正确的是:A .地面对M 的支持力等于M 的重力.B .地面对M 的支持力等于M 和m 的重力之和.C .地面对M 有向左的静摩擦力.D .地面对M 有向左的静摩擦力.✎巩固练习3.如图所示,吊篮重200N ,人重500N ,两条绳均竖直,不计绳子质量及一切摩擦.人用向下的力拉绳子,当吊篮匀速上升时,⑴ 人的拉力是多少? ⑵ 人对吊篮的压力是多少?✎巩固练习4.如图所示,人重300N,物体重200N,地面粗糙,无水平方向滑动,当人用100N的力向下拉绳子时,求人对地面的弹力和地面对物体的弹力?。
共点力平衡的应用-高中物理模块典型题归纳(含详细答案)一、单选题1.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则()A.小球受木板的摩擦力一定沿斜面向上B.弹簧弹力不可能为C.小球可能受三个力作用D.木板对小球的作用力有可能小于小球的重力mg2.如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行。
在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则()A.c对b的支持力减小B.c对b的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向向右D.地面对c的摩擦力增大3.如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行。
在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则()A.c对b的支持力减小B.c对b的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向向右D.地面对c的摩擦力增大4.如图所示,车内轻绳AB与BC拴住一小球,BC水平,开始车在水平面上向右匀速直线运动,现突然刹车做匀减速直线运动,小球仍处于图中所示的位置,则()A.AB绳、BC绳拉力都变小B.AB绳拉力变大,BC绳拉力不变C.AB绳拉力不变,BC绳拉力变小D.AB绳拉力不变,BC绳拉力变大5.如图所示,物体A、B用细绳与弹簧连接后跨过滑轮,A静止在倾角为45°的粗糙斜面上,B悬挂着。
已知,不计滑轮摩擦,现将斜面倾角由45°减小到30°,那么下列说法正确的是()A.弹簧的弹力变小B.物体A对斜面的压力将减小C.物体A受到的静摩擦力将减小D.弹簧的弹力以及A受到的静摩擦力都不变6.有甲、乙两根完全相同的轻绳,甲绳A、B两端按图甲的方式固定,然后将一挂有质量为M的重物的光滑轻质动滑轮挂于轻绳上,当滑轮静止后,设绳子的张力大小为T1;乙绳两端按图乙的方式连接,然后将同样的定滑轮且挂有质量为M的重物挂于乙轻绳上,当滑轮静止后,设乙绳子的张力大小为T2.现甲绳的B端缓慢向下移动至C点,乙绳的E端缓慢移动至F点,在两绳的移动过程中,下列说法正确的是()A.T1、T2都变大B.T1变大、T2变小C.T1、T2都不变D.T1不变、T2变大7.如图所示,两个相同的小物体P、Q静止在斜面上,P与Q之间的弹簧A处于伸长状态,Q与挡板间的弹簧B处于压缩状态,则以下判断正确的是()A.撤去弹簧A,物体P将下滑,物体Q将静止B.撤去弹簧A,弹簧B的弹力将变小C.撤去弹簧B,两个物体均保持静止D.撤去弹簧B,弹簧A的弹力将变小8.如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。
力学专题04:共点力平衡七大题型解析(原卷版)1. 引言共点力平衡是力学中的一个重要概念,也是高考物理考试的热点问题。
本题将解析共点力平衡的七大题型,帮助大家更好地理解和掌握这一知识点。
2. 共点力平衡七大题型解析2.1 题型一:力的合成与分解【例题】一个物体受到三个力的作用,分别为F1=5N,F2=10N,F3=15N,求这三个力的合力及合力为零时,第三个力在F1和F2所决定的平面内的分解力。
【解析】(1)求合力:F = F1 + F2 + F3 = 5N + 10N + 15N = 30N(2)求分解力:设F3在F1和F2所决定的平面内的分解力为F3x和F3y,则有F3 = F3x + F3y。
根据分解力的性质,有F3x^2 +F3y^2 = F3^2。
2.2 题型二:受力分析【例题】一个物体在水平桌面上受到重力、支持力和摩擦力的作用,求物体在三个方向上的受力情况。
【解析】(1)竖直方向:重力向下,支持力向上,两者大小相等,方向相反,合力为零。
(2)水平方向:若有摩擦力,则与物体运动方向相反。
若无摩擦力,则合力为零。
2.3 题型三:力的矩【例题】一个物体在桌面上受到重力、支持力和两个力的作用,其中一个力F1=10N,作用点在物体边缘,另一个力F2=15N,作用点在物体内部,求物体在水平方向上的合力。
【解析】(1)计算矩:矩=力×力臂。
对于F1,力臂为物体半径;对于F2,力臂为作用点到旋转轴的距离。
(2)根据矩的平衡条件,物体在水平方向上的合力为零。
2.4 题型四:固定角度【例题】一个物体受到两个力的作用,其中一个力F1=10N,与水平方向成30°角,另一个力F2=15N,与水平方向成60°角,求物体在水平方向上的合力。
【解析】(1)将力分解为水平方向和竖直方向的分力:F1x = F1cos30°,F1y = F1sin30°;F2x = F2cos60°,F2y = F2sin60°。
经典例题1、(多选)如图所示,水平推力使物体静止于斜面上。
则()A 、物体一定受三个力作用B 、物体可能受三个力作用C 、物体可能受到沿斜面向上的静摩擦力D 、物体可能受到沿斜面向下的静摩擦力2 、如图所示,在倾角为θ的传送带上有质量均为m的三个木块1、2、3中间均用原长为L、劲度系数为k的轻弹簧连接起来,木块与传送带之间的动摩擦因数均为μ,其中木块1被与传送带平行的细线拉住。
传送带按图示方向匀速运行。
三个木块均处于平衡状态。
下列结论正确的是(A 、2,3两木块之间的距离等于L +B 、2,3两木块之间的距离等于( sinθ +μcosθ)mgK + LC 、1,2两木块之间的距离等于2,3两木块之间的距离D 、如果传送带突然加速,相邻两木块之间的距离都将增大3 、如图,物块质量为m ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接。
甲乙两弹簧质量不计,其劲度系数分别为k1、k2起初甲弹簧处于自由长度,现用手将甲弹簧的A端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3 。
则A端上移距离可能是()A 、(k1 + k2)mgB 、2(k1 + k2)mg3k1k23k1k2C 、4(k1 + k2)mgD 、5(k1 + k2)mg3k1k23k1k24 、(多选)物块A、B的质量分别为m和2m ,用轻弹簧连接后放在光滑的水平面上,对B施加向右的水平拉力F,稳定后A、B 相对静止的在水平面上运动。
此时弹簧的长度为L1,若撤去拉力F,换成大小仍为F的水平推力向右推A,稳定后A、B相对静止的在水平面上运动,弹簧长度为L2 ,则下列判断正确的是()A 、弹簧的原长为2L1 + L23B 、两种情况下稳定时弹簧的形变量相等C 、两种情况下稳定时两物块的加速度相等D 、弹簧的劲度系数为 FL1 - L25 、如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态。
弹簧A与竖直方向的夹角为30o。
1.如图所示,放在粗糙.固定斜面上的物块A 和悬挂的物体B 均处于静止状态。
轻绳AO 绕过光滑的定滑轮与轻弹簧的右端及轻绳BO 的上端连接于O 点,轻弹簧中轴线沿水平方向,轻绳的OC 段与竖直方向的夹角53θ=,斜面倾角37α=,物块A 和B 的质量分别为5A kg m =, 1.5B kg m =,弹簧的劲度系数500/k N m =,(sin 370.6=,cos370.8=,重力加速度210/g m s =),求:(1)弹簧的伸长量x ;(2)物块A 受到的摩擦力。
3.如图所示,质量为m 1=2kg 的物体甲通过三段轻绳悬挂,三段轻绳的结点为O ,轻绳OB 水平且B 端与放置在水平面上的质量为m 2=10kg 的物体乙相连,轻绳OA 与竖直方向的夹角θ=37°,物体甲、乙均处于静止状态.乙物体与接触面间动摩擦因数μ=0.3,(已知sin37°=0.6,cos 37°=0.8,tan37°=0.75,最大静摩擦力等于滑动摩擦力,g 取10m/s 2.)求:(1)轻绳OA 受到的拉力是多大;(2)物体乙受到的摩擦力是多大?方向如何;(3)要使乙物体保持静止,那么甲物体的质量最大不能超过多少.8.如图所示,光滑金属球的质量40G N =,它的左侧紧靠竖直的墙壁,右侧置于倾角30θ=的斜面体上,已知斜面体处于水平地面上保持静止状态,sin 370.6=,cos370.8=,求:(1)墙壁对金属球的弹力大小;(2)水平地面对斜面体的摩擦力的大小和方向.12.某同学表演魔术时,将一小型条形磁铁藏在自己的袖子里,然后对着一悬挂的金属小球指手画脚,结果小球在他神奇的功力下飘起了,假设当隐藏的小磁铁位于小球的左上方某一位置C(图中θ=37°)时,金属小球偏离竖直方向的夹角也是37°,如图所示,已知小球的质量为m=4.8kg ,该同学(含磁铁)的质量为M=50kg ,(sin37°=0.6,cos37°=0.8,210/g m s =)求此时:(1)磁铁对小球的吸引力大小为多少?(2)该同学对地面的压力和摩擦力大小为多少?13.如图所示,A.B两物体叠放在水平地面上,已知A.B的质量分别为m A=10kg,m B=20kg,A.B之间,B与地面之间的动摩擦因数为μ=0.5.一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37°,今欲用外力将物体B匀速向右拉出,求所加水平力F的大小,取g=10m/s2,sin37°=0.6,cos37°=0.819.如图所示,水平地面上一重60N的物体,在与水平面成30°角斜向上的大小为20N的拉力F作用下做匀速运动,求地面对物体的支持力和地面对物体的摩擦力大小。
共点力平衡---高中物理模块典型题归纳(含详细答案)一、单选题1.如图所示,两个相同的小物体P、Q静止在斜面上,P与Q之间的弹簧A处于伸长状态,Q与挡板间的弹簧B处于压缩状态,则以下判断正确的是()A.撤去弹簧A,物体P将下滑,物体Q将静止B.撤去弹簧A,弹簧B的弹力将变小C.撤去弹簧B,两个物体均保持静止D.撤去弹簧B,弹簧A的弹力将变小2.如图5所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上移动时,球始终保持静止状态,则细绳上的拉力将()A.先增大后减小B.逐渐减小C.先减小后增大D.逐渐增大3.用轻弹簧竖直悬挂质量为m的物体,静止时弹簧伸长量为L.现用该弹簧沿斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量也为L.斜面倾角为30°,如图所示,则物体所受摩擦力()A.等于零B.大小为mg,方向沿斜面向下C.大小为mg,方向沿斜面向上D.大小为mg,方向沿斜面向上4.如果两个力彼此平衡,则它们()A.不一定作用在同一个物体上B.必不是作用力和反作用力C.必是同种性质的力D.可能是作用力与反作用力5.如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下从半球形容器最低点缓慢移近最高点。
设滑块所受支持力为F N,则下列判断正确的是()A.F缓慢增大B.F缓慢减小C.F N缓慢减小D.F N大小保持不变6.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1减小,F2增大C.F1减小,F2减小D.F1增大,F2增大7.如图所示,用OA、OB、AB三根轻质绝缘绳悬挂两个质量均为m、带等量同种电荷的小球(可视为质点),三根绳子处于拉伸状态,且构成一个正三角形,AB绳水平,OB绳对小球的作用力大小为T。
典型共点力作用下物体的平衡例题 [ [例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。
极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。
例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少? (3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。
[解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。
由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有μN-Tcosθ=0,N-Tsinθ=0。
设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。
在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。
(1)如图2所示选取坐标轴,根据平衡条件有Gcosθ+Tsinθ-mg=0,Tcosθ-Gsinθ=0。
解得T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。
(3)前已证明φ为直角。
例4]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。
共点力作用下物体的平衡典型例题[例1]质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小,如图1(甲)。
[分析]本题主要考察,物体受力分析与平衡条件,物体在斜面上受力如图1乙,以作用点为原点建立直角坐标系,据平衡条件∑F=0,即找准边角关系,列方程求解。
[解]解法一:以物体m为研究对象建立图1乙所示坐标系,由平衡条件得:Tcosθ-mgsinθ=0 (1)N-Tsinθ-mgcooθ=0 (2)联立式(1)(2)解得 N=mg/cosθ据牛顿第三定律可知,物体对斜面压力的大小为N′=mg/cosθ解法二:以物体为研究对象,建立如图2所示坐标系,据物体受共点力的平衡条件知:Ncosθ-mg=0 ∴ N=mg/cocθ同理 N′=mg/cosθ[说明](1)由上面解法可知:虽然两种情况下建立坐标系的方法不同,但结果相同,因此,如何建立坐标系与解答的结果无关,从两种解法繁简不同,可以得到启示:处理物体受力,巧建坐标系可简化运算,而巧建坐标系的原则是在坐标系上分解的力越少越佳。
(2)用正交分解法解共点力平衡时解题步骤:选好研究对象→正确受力分析→合理巧建坐标系→根据平衡条件(3)不管用哪种解法,找准力线之间的角度关系是正确解题的前提,角度一错全盘皆错,这是非常可惜的。
(4)由本题我们还可得到共点力作用平衡时的力图特点,题目中物体受重力G,斜面支持N,水平细绳拉力T三个共点力作用而平衡,这三个力必然构成如图3所示的封闭三角形力图。
这一点在解物理题时有时很方便。
[例2]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。
[分析]本题考察当θ角连续变化时,小球平衡问题,此题可以用正交分解法。
选定某特定状态,然后,通过θ角变化情况,分析压力变化,我们用上题中第四条结论解答此题。
[解]由图2知,G,N2(挡板对球作用力),N1墙壁对球作用力,构成一个封闭三角形,且θ↑封闭三角形在变化,当增加到θ’时,由三角形边角关系知N1↓,N2↓。
[说明]封闭三角形解法对平面共点三力平衡的定性讨论,简捷直观。
本题是一种动态变化题目,这种题目在求解时,还可用一种极限法判断,如把AB板与竖直墙壁夹角θ增到90°时,可知N1=0,过程中N1一直减小,N2=mg,N2也一直在减小。
[例3]如图1所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?[分析]悬绳A点受到竖直向下的拉力F=G,这个拉力将压紧水平杆AB并拉引绳索AC,所以应把拉力F沿AB、CA两方向分解,设两分力为F1、F2,画出的平行四边形如图2所示。
[解]由图2可知:因为AB、AC能承受的最大作用力之比为当悬挂物重力增加时,对AC绳的拉力将先达到最大值,所以为不使三角架断裂,计算中应以AC绳中拉力达最大值为依据,即取F2=F2m=1000N,于是得悬挂物的重力应满足的条件为 G m≤F2sin30°=500N,[说明]也可取A点为研究对象,由A点受力,用共点平衡条件求解。
A点受三个力:悬挂物的拉力F=G,杆的推力F B,绳的拉力F C,如图4所示。
根据共点力平衡条件,由F C sinα=G,F C cosα=F B,即得共点力平衡条件可以适用于多个力同时作用的情况,具有更普遍的意义。
[例4]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
[分析]此题是在共点力作用下的物体平衡问题,据平衡条件∑F x=0,∑F y=0,分别取物体B和定滑轮为研究对象,进行受力情况分析,建立方程。
[解]如图2所示,选取直角坐标系。
据平衡条件得f-T1sinα=0,N+T1cosα-m B g=0。
对于定滑轮的轴心O点有T1sinα-T2sin30°=0,T2cos30°-T1cosα-m A g=0。
因为T1=m A g,得α=60°,解方程组得(1)T1=40N,物体A所受到的重力为40N;(2)物体B与地面间的摩擦力 f=T1sinα=40sin60°≈34.6N;(3)细绳CO受到的拉力[说明]在本题中,我们选取定滑轮的轴心为研究对象,并认定T1与m A g作用在这点上,即构成共点力,使问题得以简化。
例5]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?(3)角φ多大?[分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。
[解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。
由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有μN-Tcosθ=0,N-Tsinθ=0。
设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。
在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。
1)如图2所示选取坐标轴,根据平衡条件有Gcosθ+Tsinθ-mg=0,Tcosθ-Gsinθ=0。
解得 T≈8N,(2)圆环将要滑动时,得m G g=Tctgθ,m G=0.6kg。
(3)前已证明φ为直角。
例6]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。
[分析]本题考察物体受力分析:由于求摩擦力f时,N受F制约,而求F最小值,即转化为在物理问题中应用数学方法解决的实际问题。
我们可以先通过物体受力分析。
据平衡条件,找出F与θ关系。
进一步应用数学知识求解极值。
[解]作出物体m受力分析如图2,由平衡条件。
∑F x=Fcosθ-μN=0 (1)∑F y=Fsinθ+N-G=0 (2)由 cos(θ-Ф)=1 即θ—Ф=0时∴Ф=30°,θ=30°[说明]本题中我们应用了数学上极值方法,来求解物理实际问题,这是在高考中考察的一项重要能力。
在以后解题中我们还会遇到用如:几何法、三角形法等数学方法解物理问题,所以,在我们学习物理时,逐步渗透数学思想,对解决物理问题是很方便的。
但要注意,求解结果和物理事实的统一性。
[例7]如图1,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A 与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
[分析]本题主要考察受力分析及物体平衡条件。
选择A为研究对象,分析物体A受力,应用正交分解法。
据平衡条件求解。
[解]取A为研究对象,画出A受力如图2,建立如图所示坐标系。
据物体平衡条件∑F x=mgsinθ-f1-f2=0 (1)∑F y=N1-N B-mgcosθ=0 (2)其中 f1=μN1(3)f2=μNB (4)由B受力知 N B=mgcosθ(5)联立上面式(1)(2)(3)(4)(5)得[说明](1)本题在进行受力分析时,要注意A与斜面C的接触力N1和f1,A 与物体B的接触力N2和f2,一定注意,N1和N2的取值。
(2)本题可以变化为若A沿斜面加速下滑,或沿斜面减速下滑。
μ应满足关系?则加速时 mgsinθ>μN1+μN B(3)摩擦力公式f=μN,有时因物体只受水平作用力,f=μN=μmg,但当物体受力变化以后, N就不一定等于mg了,如图3的两个情形。
所以切记:公式一定要写成μN。
对N求解不要想当然,应据题设进行实际分析而得。
【例8】如图1所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P 上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?[误解一]滑轮C点受杆BC的支持力F、绳AC的拉力T和绳CP的拉力Q(其中Q 大小等于G),如图2所示。
由平衡条件可得F=G·sinα, T=G·cos α当绳的A点下移后,α增大,所以F增大,而T减小。
[误解二]滑轮C点受到杆BC支持力F,绳AC的拉力T和绳CP的拉力Q(其中Q 的大小等于G),如图3,T与F的合力与Q等值反向。
当 A点下移后,T与竖直方向的夹角要增大,滑轮C也要下降,使BC与墙间的夹角θ增大,但因这两力的合力始终与Q等值反向,所以这两个分力均要增大。
[正确解答]滑轮C点受到F、T、Q三力作用而平衡,三力组成封闭三角形,如图4,注意到同一条绳上各处张力都相同,则有T=Q=G,以杆受到压力增大,而绳子拉力仍不变,大小为G。
[错因分析与解题指导]当不计绳子的质量时,绳子各处张力都相等,两个[误解]都未认识这个事实。
另外,[误解一]自设T与 F垂直作为讨论依据并将它扩展到一般情况,是毫无道理的。
[误解二]则臆断A点下移时,滑轮C也要下降,BC 与墙间的夹角θ增大,与事实不符。
值得一提的是:本题BC杆对滑轮C点的作用力是沿着杆子的,而这是有条件的,仅当BC杆重力不计且只受两个力作用而平衡时,上述结论才成立。
1.明确研究对象,对它进行受力分析,画出受力图;2.根据平衡条件列方程;3.统一单位,代入数字、解方程、求答案。
由题讲话由题讲话,促使学生积极思维,获得更加全面的知识,加深对物理现象和规律的理解。
现举一、二例加以说明。
如图1,OA是一根横梁,一端安在轴O上,另一端用钢索AB拉着,在B处安装一小滑轮,可以改变钢索的长度,OB=OA,在A 端挂一重物G。
(横梁重不计)试求钢索BA的拉力?学生不感到困难。
根据∑M=0,解得:这时教师向学生发问:若将钢索BA加长(即缓慢下放),钢索的拉力F如何变化?学生根据上面的结果自然会想到,θ角将逐渐变小,力F必将逐渐增大。
当θ角趋近于零时,F将变得无限大!?F逐渐变大,与感性认识不太相符;无限大,显然不符合实际情况,感到疑惑不解。
毛病出在哪里呢?让学生去思索结症在哪里。
教师可以启发学生,在缓慢下放的过程中,θ角变小,但F的力臂也随着变小,(注意表达式Lsinθ不变),尤其G的力臂也在变小,不再是OA的长,显然图1不能反映一般的情况,应该重新作图分析,如图2。