风力摆控制系统设计报告
- 格式:doc
- 大小:417.03 KB
- 文档页数:11
2015年全国大学生电子设计竞赛风力摆控制系统( B 题)2015 年8 月15 日本文以IAP单片机为控制核心,可以在运行过程中对User Flash的部分区域进行烧写;MPU605是陀螺仪与加速度传感器的结合,可实时检测出风力摆的状态并由单片机处理后通过PID控制算法实现闭环调节,实现对直流电机转速的控制以此来达到风力摆的动态平衡。
系统设计结构简单,制作成本低,控制精度高。
风力摆运行状态由液晶显示,智能性好,反应速度快,具有良好的人机交互界面。
目录一、系统方案 (1)1、电机的论证与选择12、单片机的论证与选择...............................................................13、电机驱动电路的论证与选择1二、系统理论分析与计算22.1保证系统稳定性的方法 (2)⑴选取合适的材料搭建支架 (2)(2)选取适宜的硬件提高精准度 (2)1、小型直流电机电路32、显示模块的电路33、电机驱动电路3三、系统设计31、系统流程图32、程序设计(见附录) ................................................................3四、测试方案及结果31、测试仪器32、测试结果33、测试分析 (5)五、结论与心得5六、参考文献5附录1 :源程序 (6)风力摆控制系统( B 题)【本科组】一、系统方案本系统主要由控制处理模块、角度,加速度检测模块、驱动模块、电源模块、显示组成,下面分别论证这几个模块的选择。
1、电机的论证与选择方案一:采用步进电机。
步进电机具有动态响应快、易于起停,易于正反转及变速的优点。
但缺点是它以步进式跟进,角度小于一个步距角时是系统响应盲区,而且经过测试步进电机在控制旋转臂时,抖动性大并且容易出现卡顿现象,所以不适合风力摆的控制。
方案二:采用小型轴流风机。
扭矩大,体积小,驱动电路简单,稳定强,负载能力强等优点。
风力摆的精确控制设计杜金祥;杜宇轩【摘要】Design a measurement and control system, control drive the fan makes wind pendulum movement according to certain rule, laser pen to draw the required path on the ground.This design by STM32F4 micro-processor,gyroscope, OLEDdisplay, human-computer interaction system, universal joint structure of closed-loop control system, etc. Gyro attitude algorithm, data for the system to provide the accurate PID control fan speed.In drive, using the pulse width control large current driver chipBTN7971 debugging technology, can very good to dc fan speed, direction and start-stop and other working condition for rapid, accurate control.The brush position control.LOD linear regulator was adopted in the power control chip, the power supply ripple is small, ensure the stable operationof the system.This system has realized the wind in the under the dc fan power control was only fast the pendulum, line drawing, restore the function of static, and accurately draw circle, and affected by the wind can quickly restore circle state, has the very good robustness.In addition, this system has good man-machine interface, the parameters and test mode is the key input and through the liquid crystal display, operation is simpleand convenient.%设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。
摘要:本次风力摆控制系统设计,采用4个直流风机垂直挂在长约70cm的细管下方,直流风机下方固定一个激光笔,当风力摆受控制按一定规律运动时,激光笔在地上画出相应的轨迹。
本设计以STC15W4K32S4系列的芯片作为主控芯片,采用LM298模块作电机驱动,通过单片机控制其输入占空比获得不同高低电平,达到对电机转速的控制。
空间角度测量中,本设计采用MPU-6050陀螺仪对空间角度进行准确追踪,精度高。
最终可将所测部分数据传输到LCD12864显示出来。
关键字:STC15W4K32S4单片机轴流风机陀螺仪一、设计任务设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。
1.基本要求(1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于±2.5cm,并且具有较好的重复性;(2)从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于±2.5cm的直线段,并且具有较好的重复性;(3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画出不短于20cm的直线段;(4)将风力摆拉起一定角度(30°~60°)放开,5s内使风力摆制动达到静止状态。
2.发挥部分(1)以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径±2.5cm的圆环内;(2)在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹;(3)其他。
二、方案论证基于本次风力摆控制系统的设计,我们有如下几种方案:方案一:采用传统的51单片机做主控芯片,其体积小,价格便宜,控制简单,但其运算速度慢,内部存储容量小,难以存储大体积的程序和实现快速精准的反应控制。
风摆控制实验系统设计余善恩;李真【摘要】The experimental system aims to meet the teaching and studying requirements ,which provides the experimental platform for learning the principle of automatic control ,MCU ,embedded system ,etc .The main research contents include design of angular surveying ,control & drive module ,and PC software .MPU6050 was used for angular surveying ,PID control algorithm was used to control the flap to go to the target angular , and PC software was used for display ,analysis ,and processing .%为满足"自动控制原理"实验教学的需要,研发了一套风摆控制实验系统.该系统分为角度检测模块、控制驱动模块、上位机软件3部分.控制驱动模块接收来自角度检测模块的风摆角度信息,与上位机设定的目标角度进行比较,计算出当前的风机驱动量并调节风机风力,将风摆控制到目标位置.该系统提供了一个综合性实验平台,能够灵活地应用于单片机、嵌入式系统、电机控制等课程.【期刊名称】《实验技术与管理》【年(卷),期】2017(034)006【总页数】4页(P135-138)【关键词】风摆;自动控制;PID控制;实验系统【作者】余善恩;李真【作者单位】杭州电子科技大学自动化学院 ,浙江杭州 310018;杭州电子科技大学自动化学院 ,浙江杭州 310018【正文语种】中文【中图分类】G642.423“自动控制原理”是自动化类专业本科生的重要专业课,也是其他院系本科生的专业基础课或选修课。
全国大学生电子设计竞赛B题风力摆设计报告公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-2015年全国大学生电子设计竞赛风力摆控制系统(B题)2015年8月15日摘要本文以 IAP 单片机为控制核心,可以在运行过程中对User Flash的部分区域进行烧写;MPU6050是陀螺仪与加速度传感器的结合,可实时检测出风力摆的状态并由单片机处理后通过PID 控制算法实现闭环调节,实现对直流电机转速的控制以此来达到风力摆的动态平衡。
系统设计结构简单,制作成本低,控制精度高。
风力摆运行状态由液晶显示,智能性好,反应速度快,具有良好的人机交互界面。
目录风力摆控制系统(B题)【本科组】一、系统方案本系统主要由控制处理模块、角度,加速度检测模块、驱动模块、电源模块、显示组成,下面分别论证这几个模块的选择。
1、电机的论证与选择方案一:采用步进电机。
步进电机具有动态响应快、易于起停,易于正反转及变速的优点。
但缺点是它以步进式跟进,角度小于一个步距角时是系统响应盲区,而且经过测试步进电机在控制旋转臂时,抖动性大并且容易出现卡顿现象,所以不适合风力摆的控制。
方案二:采用小型轴流风机。
扭矩大,体积小,驱动电路简单,稳定强,负载能力强等优点。
综合比较以上两种电机,结合设计所需平稳的控制摆杆处于竖直状态,故选择小型轴流风机。
2、单片机的论证与选择方案一:采用 AT89C52 单片机。
AT89C52 单片机是一种低功耗、高性能CMOS 8 位微控制器,具有 8K 在系统可编程 Flash 存储器。
方案二:采用IAP15F2K61S2 单片机。
IAP 系列单片机具有低功耗、高速度、超强抗干扰等优点。
方案三:采用 STC89C52RC 单片机本身带有有 8 路十位 AD 转换和 2 路PWM,而且处理速度比一般单片机要快,精度高。
综合比较以上三种单片机。
为了更方便、高精度、高速度地控制系统,完成题目要求,故选择 IAP15F2K61S2 单片机为主控芯片。
2015年全国大学生电子设计竞赛风力摆控制系统(B题)2015年8月15日摘要本风力摆系统主要包括单片机控制模块,开关电源(电源模块)激光笔及小型轴流风机,以及基于六轴倾角仪mpu6050的闭环控制系统。
其中控制模块采用STM32为核心控制芯片,激光笔作为系统的执行机构,12V2.5A的小型轴流风机作为驱动风力摆的唯一动力,用12V的开关电源驱动轴流风机。
轴流风机和摆杆通过万向节固定在支架上(用粗股导线将风力摆悬挂在支架上)。
固定在支架上,测量得到的角度经过软件处理得到风力摆摆动所需要的PWM值。
(本系统的PID 算法算法是通过实际经验试验出风力摆的控制规律,稳定的完成风力摆运动过程中激光笔画轨迹。
)关键词:风力摆; STM32; 轴流风机; PID算法; mpu6050目录一、系统结构方案与设计 (1)1、机械结构设计 (1)2、主控芯片的论证与选择 (1)3、风力摆结构方案的论证和选择 (2)4、运动控制算法的论证和选择 (2)二、系统理论分析与计算 (2)1、摆杆位置检测 (2)2、风力摆运动控制分析 (2)3、控制算法分析 (2)三、电路与程序设计 (3)1、电路的设计 (3)(1)STM32最小系统电路 (4)(2)稳压电源电路 (4)2、程序的设计 (4)(1)程序功能描述与设计思路 (4)(2)程序流程图 (4)四、测试方案与测试结果 (5)1、测试方案 (5)2、测试条件与仪器 (5)3、测试结果及分析 (5)(1)测试结果(数据) (5)(2)数据分析与结论 (7)五、结论与心得 (7)六、参考文献 (8)附录1:电路原理图 (9)附录2:源程序 (11)风力摆控制系统(B题)【本科组】一、系统结构方案与设计1、机械结构设计我们以生钢为材料加工成的十字作为风力摆支架的底盘,结构坚固克服摆动时的震动。
以实心的钢棒作为摆杆减小了摆动时的自旋,用万向节将摆杆和支架的水平臂连接保证了摆动的灵活性以及达到了摆动角度和速度的精确控制。
风力摆论文报告WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-风力摆控制系统(B题)摘要本风力摆控制系统主要包括单片机控制模块,液晶显示模块,直流电机,驱动模块以及姿态检测模块构成闭环系统。
其中控制模块采用STM32F103为控制芯片,直流电机为执行机构,电子调速器为电机驱动。
MPU6050采集风力摆姿态角,MCU处理姿态角数据后通过PID算法调节直流风机以控制风力摆快速画直线、摆角度,恢复静止的功能,并能按照要求画圆,在受风力影响后能够快速恢复画圆状态。
另外本系统采用OLED显示屏实现了友善方便的人机交互界面。
关键词:STM32F103 MPU6050 PID算法电子调速器?1系统论证与比较系统基本方案本系统主要由主控制模块、姿态检测模块、液晶显示模块,电机驱动模块和悬挂模块四部分组成,实现了风力摆控制系统。
系统框图如图1所示。
图1 风力摆控制系统总体框图姿态检测方案的论证与选择方案一:倾角传感器。
倾角传感器运用牛顿第二定律,根据定律,当倾角传感器静止的时候,由于物体的侧面还有垂直方向是受到其他力的作用,只有重力的作用,也就是说作用在它身上的就只有重力加速度了,所以由此产生的重力垂直轴与加速度传感器灵敏轴之间的夹角,可以用来测量相对于水平面的倾角变化量,就是我们所说的倾斜角。
但是倾角传感器侧重于静态测量,不适合检测运动物体的角度变化。
方案二:MPU6050。
MPU6050六轴传感器集成3轴MEMS陀螺仪和三轴MEMS 加速度计,每个轴对应有一个16位AD转换器。
正常工作时,陀螺仪和加速度计分别采集X轴,Y轴,Z轴的电压值,然后通过AD转换,转换成数字信号,最后通过I2C总线传送到控制芯片,但此时得到的值不是实际的角度和角速度值,还必须经过一定的比例关系进行转换,才能得到实际的角度和角速度值。
该传感器整合了6轴运动处理组件,免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的封装空间。
风力摆控制系统方案简介风力摆控制系统是用来控制风力摆的运动的一种系统。
风力摆通常用于测量风力的强度和方向,以便在风能利用方面进行相应的调整和优化。
本文将介绍一个设计用于控制风力摆运动的系统方案。
目标本系统的目标是实现对风力摆的精确控制,使其可以随需要而停止、开始或改变方向。
通过控制风力摆的运动,可以提高其测量精度,并确保风能的高效利用。
系统组成本系统主要由下面几个组成部分构成:1. 风力摆风力摆是本系统的核心部件,它用于测量风向和风速。
风力摆通常由一个垂直铰接杆和一个悬挂在杆上的摆锤组成。
当风吹过摆锤时,摆锤会向相反方向摆动,从而使测量者能够通过观察摆动的幅度和方向来判断风的强度和方向。
2. 传感器为了实现对风力摆的控制,需要安装相应的传感器来检测风力摆的姿态和运动。
常用的传感器包括倾斜传感器和加速度传感器。
倾斜传感器用于检测风力摆的倾斜角度,而加速度传感器用于检测风力摆的加速度。
这些传感器可以提供给控制系统必要的数据,以便进行相应的控制。
3. 控制器控制器是系统中的核心部件,负责接收传感器的数据并根据设定的控制算法对风力摆进行控制。
控制器通常由微处理器或可编程逻辑控制器(PLC)组成,它可以根据需求改变风力摆的运动方向、幅度或停止风力摆的运动。
4. 电源与通信模块为了保证系统的正常运行,需要为系统提供稳定的电源。
另外,为了方便对系统进行监控和控制,还需要配备相应的通信模块,使得系统可以与外部设备进行数据传输和命令交互。
系统工作原理本系统工作的基本原理是通过控制器对风力摆进行精确控制。
控制器通过接收传感器提供的数据来判断当前风力摆的状态,并根据设定的控制算法采取相应的控制策略。
控制信号经过放大和处理后,通过执行机构控制风力摆的运动。
系统的工作流程如下:1.传感器采集风力摆的姿态和运动数据,并将数据传输给控制器。
2.控制器根据接收到的数据判断风力摆的状态,如姿态角度、加速度等。
3.控制器根据设定的控制算法,计算出相应的控制信号。
全国大学生电子设计竞赛B题风力摆设计报告公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]2015年全国大学生电子设计竞赛风力摆控制系统(B题)2015年8月15日摘要本文以 IAP 单片机为控制核心,可以在运行过程中对User Flash的部分区域进行烧写;MPU6050是陀螺仪与加速度传感器的结合,可实时检测出风力摆的状态并由单片机处理后通过PID 控制算法实现闭环调节,实现对直流电机转速的控制以此来达到风力摆的动态平衡。
系统设计结构简单,制作成本低,控制精度高。
风力摆运行状态由液晶显示,智能性好,反应速度快,具有良好的人机交互界面。
目录风力摆控制系统(B题)【本科组】一、系统方案本系统主要由控制处理模块、角度,加速度检测模块、驱动模块、电源模块、显示组成,下面分别论证这几个模块的选择。
1、电机的论证与选择方案一:采用步进电机。
步进电机具有动态响应快、易于起停,易于正反转及变速的优点。
但缺点是它以步进式跟进,角度小于一个步距角时是系统响应盲区,而且经过测试步进电机在控制旋转臂时,抖动性大并且容易出现卡顿现象,所以不适合风力摆的控制。
方案二:采用小型轴流风机。
扭矩大,体积小,驱动电路简单,稳定强,负载能力强等优点。
综合比较以上两种电机,结合设计所需平稳的控制摆杆处于竖直状态,故选择小型轴流风机。
2、单片机的论证与选择方案一:采用 AT89C52 单片机。
AT89C52 单片机是一种低功耗、高性能 CMOS 8 位微控制器,具有 8K 在系统可编程 Flash 存储器。
方案二:采用IAP15F2K61S2 单片机。
IAP 系列单片机具有低功耗、高速度、超强抗干扰等优点。
方案三:采用 STC89C52RC 单片机本身带有有 8 路十位 AD 转换和 2 路 PWM,而且处理速度比一般单片机要快,精度高。
综合比较以上三种单片机。
为了更方便、高精度、高速度地控制系统,完成题目要求,故选择 IAP15F2K61S2 单片机为主控芯片。
简易风力摆报告设计Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT摘要设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。
以MSP430F149单片机为核心,用PWM波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。
关键词:风力控制摆、陀螺仪、轴流风机、PWM调速、MSP430单片机风力摆控制系统(B题)1方案设计与选择设计内容要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。
通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。
图1风力摆结构图设计要求基本要求(1)从静止开始,15s 内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm 的直线段,其线性度偏差不大于±,并且具有较好的重复性;(2)从静止开始,15s 内完成幅度可控的摆动,画出长度在30~60cm 间可设置,长度偏差不大于±的直线段,并且具有较好的重复性;(3)可设定摆动方向,风力摆从静止开始,15s 内按照设置的方向(角度)摆动,画出不短于20cm 的直线段;(4)将风力摆拉起一定角度(30~45°)放开,5s 内使风力摆制动达到静止状态。
发挥部分(1)以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s 内需重复3 次;圆半径可在15~35cm 范围内设置,激光笔画出的轨迹应落在指定半径±的圆环内;(2)在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m 距离内用一台50~60W 台扇在水平方向吹向风力摆,台扇吹5s 后停止,风力摆能够在5s 内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹;(3)其他。
风力摆控制系统(B 题)摘要:本系统为由 STM32 单片机控制模块、姿态采集模块、风力摆模块、液晶显示模块、人机交互系统以及风力摆机械结构组成的闭环控制系统。
MPU6050 采集风力摆姿态角,单片机处理姿态角数据后通过 PID 精确算法调节直流风机以控制风力摆。
本系统实现了风力摆在仅受直流风机为动力控制下快速起摆、画线、恢复静止的功能,并能准确画圆,且受风力影响后能够快速恢复画圆状态,具有很好的鲁棒性。
另外,本系统具有良好的人机交互界面,各参数及测试模式可由按键输入并通过液晶显示,智能性好,反应速度快。
关键词:PID 算法 MPU6050 STM32单片机人机交互1系统方案本风力摆控制系统主要包括单片机控制模块、电源模块、姿态采集模块、风力摆模块、液晶显示模块、人机交互系统以及风力摆机械结构组成。
风力摆由万向节连接碳杆再连接风机组成。
位于碳杆最下方的姿态采集模块不断采集风力摆当前姿态角,并返回单片机。
单片机控制液晶显示姿态角数据并处理数据后通过控制PWM 波占空比控制风机转速,实现对风力摆的控制。
本系统结构框图如图1所示。
图1 系统总计结构框图1.1处理器选择方案方案一:采用传统的51系列单片机。
传统的51单片机为8位机,价格便宜,控制简单,但是运算速度慢,片内资源少,存储容量小,难以存储大体积的程序和实现快速精准的反应控制。
并且受时钟限制,计时精度不高,外围电路也增加了系统的不可靠性。
方案二:采用以增强型80C51内核的STC系列单片机STC12C5A60S2,其片内集成了60KB程序Flash,2通道PWM、16位定时器等资源,操作也较为简单,具有在系统调试功能(ISD),开发环境非常容易搭建。
但实际使用了三维角度传感器等对速度要求较高的外设,因此无法很好地符合设计的需要。
方案三:采用以ARM Cortex-M3为内核的STM32F1系列控制芯片,STM32系列芯片时钟频率高达72MHz,具有64K字节SRAM,512K字节的FLASH容量,具有极强的处理计算能力。