人教版八年级上册数学乘法公式重要知识要点梳理与典型例题及答案解析
- 格式:pdf
- 大小:159.35 KB
- 文档页数:7
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
八年级数学上册第十四章整式的乘法与因式分解重点知识点大全单选题1、下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a−b2C.−a2+b2D.−a2−b2答案:C分析:根据平方差公式的定义判断即可;A、原式不能利用平方差公式进行因式分解,不符合题意;B、原式不能利用平方差公式进行因式分解,不符合题意;C、原式=(b−a)(b+a),能利用平方差公式进行因式分解,符合题意;D、原式不能利用平方差公式进行因式分解,不符合题意,故选:C.小提示:本题主要考查了平方差公式分解因式,准确判断是解题的关键.2、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.3、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;4、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.5、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B分析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k+1)=±4,解得:k=1或-3,故D正确.故选:D.小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.−2D.−4答案:A分析:根据a2+14b2=2a−b−2,变形可得:a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0,因此可求出a=1,b=−2,把a和b代入3a−12b即可求解.∵a2+14b2=2a−b−2∴a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0即(a−1)2=0,(12b+1)2=0∴求得:a=1,b=−2∴把a和b代入3a−12b得:3×1−12×(−2)=4故选:A小提示:本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.填空题11、多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=_____.答案:﹣2分析:根据题意只要使含x3项和x2项的系数为0即可求解.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.所以答案是:﹣2.小提示:本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可.12、分解因式:x2y+xy2=______.答案:xy(x+y)分析:利用提公因式法即可求解.x2y+xy2=xy(x+y),所以答案是:xy(x+y).小提示:本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.13、已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.答案:2分析:将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.小提示:本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.14、观察下列等式:①32−12=4×2;②42−22=4×3;③52−32=4×4;④62−42=4×5;…,第n(n为正整数)个等式为________.答案:(n+2)2−n2=4(n+1)分析:利用已知数据得出变化规律,进而得出答案即可.解:由32−12=4×2,42−22=4×3,52−32=4×4,62−42=4×5,…,可得:(n+2)2−n2=(n+2+n)(n+2−n)=4(n+1),即:(n+2)2−n2=4(n+1).故答案是:(n+2)2−n2=4(n+1).小提示:此题主要考查了数字变化规律以及平方差公式,得出数字变化规律是解题关键.15、若(m+2022)2=10,则(m+2021)(m+2023)=______.答案:9分析:先将m+2021变形为m+2022−1,m+2023变形为m+2022+1,然后把(m+2022)看作一个整体,利用平方差公式来求解.解:∵(m+2022)2=10,∴(m+2021)(m+2023)=(m+2022−1)(m+2022+1)=(m+2022)2−1=10-1=9.所以答案是:9.小提示:本题考查了平方差公式,代数式求值,解题的关键是熟练掌握平方差公式:(a+b)(a−b)=a2−解答题16、先化简,再求值:(3x +2)(3x −2)−5x (x −1)−(2x −1)2,其中x =−13. 答案:9x -5,−8分析:先计算乘法,再计算加减,然后把x =−13代入化简后的结果,即可求解. 解:(3x +2)(3x −2)−5x (x −1)−(2x −1)2=9x 2−4−5x 2+5x −4x 2+4x −1=9x −5当x =−13时,原式=−13×9−5=−8小提示:本题主要考查了整式的混合运算——化简求值,熟练掌握整式的混合运算法则是解题的关键.17、化简:3(a ﹣2)(a +2)﹣(a ﹣1)2.答案:2a 2+2a -13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a ﹣2)(a +2)﹣(a ﹣1)2=3(a 2-4)-(a 2-2a +1)=3a 2-12-a 2+2a -1=2a 2+2a -13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.18、爱动脑筋的小明在学习《幂的运算》时发现:若a m =a n (a >0,且a ≠1,m 、n 都是正整数),则m =n ,例如:若5m =54,则m =4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x ×32x =236,求x 的值;(2)如果3x+2+3x+1=108,求x 的值.答案:(1)x =5分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.。
整式的乘法同底数幂的乘积为正整数)n m a a a n m n m ,(+=∙注意点:(1)必须清楚底数、指数、幂这三个基本概念的涵义。
(2)前提必须是同底数,指数才可以相加(3)底可以是一个具体的数或字母,也可以是一个单项式或多项式,(4)指数都是正整数(5)三个或三个以上的同底数幂相乘,即为正整数)p n m a a a a p n m p n m ,,(++=∙∙(6)不要与整式加法相混淆。
(7)这个公式是可逆的为正整数)n m a a a n m n m ,(∙=+类型一:x 3·x 4 = x n ·x 4= ________3=⋅a a________32=⋅⋅a a a ; 3x 2·x n ·x 4==⨯⨯252222 =∙+12n n y y ;类型二:(1) 已知xm-n ·x 2n+1=x 11,且y m-1·y 4-n =y 5,求mn 2的值。
(2)若22m ·8=2n,则n=类型三:(1)、 (- )(- )2(-)3 (2)、 -a 4·(-a)4·(-a)5(3)、 (x-y)3(y-x)(y-x)6 (4)、 201220112-)-2()(+类型四:已知2a =3, 2b =6, 2c=12,试探究a 、b 、c 之间的关系;1. 幂的乘方为正整数)n m a a mn n m ,()(=注意点:(1)幂的底数a 可以是具体的数也可以是多项式。
(2)不要和同底数幂的乘法法则相混淆(3)公式的可逆性:为正整数)n m a a n m n m ,()(=+;为正整数)n m a a a m n m n n m ,()()(=(4)公式的扩展:为正整数)p n m a a m np p n m ,,(])[(=为正整数),,()(])[(n m b a b a m n n m +=+类型一:(a 3)5 = ; =-3)(3m x ; =∙n a a 32)( ;[(a+b )2]3= ; [(a 2)5]3= ;类型二:【例1】若3y 2x 5,35,25+==求y x【例2】若,510,410==m n 求,101032m n +的值;【例3】已知3344555,4b ,3a ===c ,试比较a,b,c 的大小;2. 积的乘方()为正整数)n b a n n (ab n =注意点:(1)注意与前二个法则的区别: (2)积的乘方推广到3个以上因式的积的乘方()为正整数)n a a a a a a a nm n n m (a 321n 321 =∙∙ (3)每个因式可以是单项式,多项式,或者其他代数式(4)每个因式都要乘方,然后将所得的幂相乘(5)公式的可逆性:()为正整数)n b a n n (ab n= (6) 幂的乘方,积的乘方的可逆性: a mn =(a m )n =(a n )m类型一:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a类型二:【例1】当ab=,m=5, n=3, 求(a m b m )n的值。
专题14.3整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)【要点提示】(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.【知识点2】单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点提示】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.【知识点3】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点提示】(1)单项式与多项式相乘的计算方法,实质利用乘法分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算过程中要注意符号问题,多项式中的每一项包括它前面的符号,还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【知识点4】多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点提示】多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.知识点与题型目录【知识点一】同底数幂的除法【题型1】同底数幂的除法运算及逆运算.........................................3;【知识点二】单项式相乘【题型2】单项式相乘.........................................................4;【题型3】利用单项式相乘求字母或代数式的值...................................5;【知识点三】单项式乘以多项式【题型4】单项式乘以多项式的运算与求值.......................................7;【题型5】单项式乘以多项式的应用.............................................8;【题型6】利用单项式乘以多项式求字母的值....................................10;【知识点四】多项式相乘【题型7】计算多项式乘以多项式..............................................11;【题型8】计算多项式乘以多项式化简求值......................................12;【题型9】(x+p)(x+q)型多项式相乘.........................................14;【题型10】整式乘法中的不含某个字母问题.....................................15;【题型11】多项式相乘中的几何问题...........................................16;【知识点五】多项式除以单项式【题型12】多项式除以单项式.................................................18;【知识点六】多项式除以单项式【题型13】整式乘法混合运算.................................................19;【直通中考与拓展延伸】【题型14】直通中考.........................................................21;【题型15】拓展延伸.........................................................22.第二部分【题型展示与方法点拨】【题型1】同底数的除法运算及逆运算【例1】(23-24八年级上·天津滨海新·期末)计算:()()23432253339xy x x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣.【答案】523y y -【分析】本题考查了整式的混合运算的应用,先算乘方,再算乘法,最后算除法即可.解:()()23432253339xyx x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣()2832233539279x y x x y x y x y =⋅-⋅÷()5855539279x y x y x y ÷=-523y y =-.【变式1】(22-23七年级下·广东深圳·阶段练习)若4m a =,8n a =,则32m n a -的值为()A .12B .1C .2D .4【答案】B【分析】本题考查了逆用同底数幂除法法则和幂的乘方的运算法则,先逆用同底数幂除法法则、然后再运用幂的乘方的运算法则将32m n a -化成含有m a 和n a 的形式,然后代入即可解答.解:()()32323232481m n m n m n a a a a a -=÷=÷=÷=,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知2320x y --=,则()()231010x y ÷=.【答案】100【分析】本题主要考查了幂的乘方计算,同底数幂除法计算,先根据题意得到232x y -=,再根据幂的乘方计算和同底数幂除法计算法则得到()()2323101010x y x y -÷=,据此求解即可.解:∵2320x y --=,∴232x y -=∴()()231010x y ÷231010x y =÷2310x y -=210=100=,故答案为:100.【题型2】单项式相乘【例2】(22-23八年级上·福建厦门·期中)计算:(1)()2243623a a a a ⋅+-;(2)()()23225x x y -⋅-【答案】(1)0;(2)820x y-【分析】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握公式是解题的关键.(1)根据单项式乘以单项式,幂的乘方,合并同类项解答即可.(2)根据积的乘方,单项式乘以单项式解答即可.解:(1)()2243623a a a a ⋅+-66623a a a =+-0=.(2)()()23225x x y -⋅-()6245x x y=⋅-820x y =-.【变式1】(23-24七年级下·全国·单元测试)计算()222133x y xy ⎛⎫-⋅- ⎪⎝⎭的结果为()A .45x y -B .4513x y C .3213x y -D .4513x y -【答案】D【分析】本题考查整混合运算,熟练掌握幂的乘方和积的乘方法则、单项式乘以单项式法则是解题的关键.先计算乘方,再计算运用单项式乘以单项式法则计算即可.解:()222133x y xy ⎛⎫-⋅- ⎪⎝⎭()224139x y x y =-⋅4513x y =-,故选:D .【变式2】(23-24七年级下·全国·单元测试)计算:()()3222324623418ab a b a b a b -⋅+⋅=.【答案】0【分析】本题主要考查了积的乘方计算,单项式乘以单项式,合并同类项,先计算积的乘方,再计算单项式乘以单项式,最后合并同类项即可.解:()()3222324623418ab a b a b a b -⋅+⋅3642788972a b a b a b =-⋅+78787272a b a b =-+0=,故答案为:0.【题型3】利用单项式相乘求字母或代数式的值【例3】(22-23七年级下·广东梅州·期中)先化简,后求值:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =,2.5y =-.【答案】7533944x y x y -,16325【分析】此题考查了整式的混合运算,首先根据积的乘方和单项式乘以单项式运算法则化简,然后代入求解即可,解题的关键掌握运算法则.解:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭()33423394416x y x y x y +-⋅=7533944x y x y =-当20.45x ==,52.52y =-=-时,原式753349252545252⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-3757592525445252⎛⎫=-⨯⨯-⨯-⨯ ⎪⎝⎭9425=-+16325=.【变式1】(2024·陕西榆林·三模)已知单项式24xy 与313x y -的积为3n mx y ,则m ,n 的值为()A .43m =-,4n =B .12=-m ,2n =-C .43m =-,3n =D .12=-m ,3n =【答案】A【分析】此题考查了单项式的乘法运算,按照单项式乘单项式计算单项24xy 与313x y -的积,再根据单项式24xy 与313x y -的积为3n mx y ,即可求得答案.解:∵234314433xy x y x y ⎛⎫⨯-=- ⎪⎝⎭,单项式24xy 与313x y -的积为3n mx y ,∴43m =-,4n =,故选:A .【变式2】(23-24七年级下·全国·假期作业)若()()1221253m n n n a b a b a b ++-⋅=,则m n +的值为.【答案】143/243【分析】本题主要考查了单项式乘以单项式,根据单项式乘以单项式的计算法则得到1212253m n n n a b a b ++-++=,据此可得25323m n n +=⎧⎨+=⎩,解之即可得到答案.解:∵()()1221253m n n nababa b++-⋅=,∴1212253m n n n a b a b ++-++=,∴25323m n n +=⎧⎨+=⎩,∴13313m n ⎧=⎪⎪⎨⎪=⎪⎩,∴143m n +=,故答案为:143.【题型4】单项式乘以多项式的运算与求值【例4】(23-24八年级上·吉林·阶段练习)先化简,再求值:()()223243234a a a a a -+-+,其中1a =-.【答案】2209a a -+,29-【分析】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.先根据单项式乘以多项式法则展开,再合并同类项,即可化简,然后把1a =-代入化简式计算即可.解:()()223243234a a a a a -+-+,3232612968a a a a a =-+--,2209a a =-+.当1a =-时,原式()()22019129=-⨯-+⨯-=-.【变式1】(2024·陕西咸阳·模拟预测)计算132xy x y ⎛⎫-⋅- ⎪⎝⎭的结果是()A .223x y xy +B .22332x y xy --C .22332x y xy -+D .22132x y xy -+【答案】C【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则计算得出答案.解:132xy x y ⎛⎫-⋅-⎪⎝⎭22332x y xy =-+.故选:C .【变式2】(23-24七年级下·江苏南京·阶段练习)若220240a a +-=,代数式()()220241a a -+的值是.【答案】2024-【分析】此题考查了代数式的值,整体代入是解题的关键.首先根据220240a a +-=,可得22024a a -=-,把22024a a -=-代入()()220241a a -+,然后把22024a a +=代入化简后的算式计算即可.解:∵220240a a +-=,∴22024a a -=-,∴()()220241a a -+()1a a =-+()2a a =-+.∵220240a a +-=,∴22024a a +=,∴原式()2a a =-+2024=-.故答案为:2024-.【题型5】单项式乘以多项式的应用【例5】(23-24七年级下·广东佛山·阶段练习)小红的爸爸将一块长为322455a b ⎛⎫+⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?【答案】(1)8522325a a b +(平方分米);(2)360元【分析】此题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键.(1)根据题意列出关系式,去括号合并即可得到结果;(2)把a 与b 的值代入计算,再根据每平方分米喷漆价格为15元,求出喷漆的费用即可.解:(1)根据题意得:2325424155452a b a a ⎛⎫⎛⎫+⋅-⨯ ⎪ ⎪⎝⎭⎝⎭85282425a a b a =+-8522325a a b =+(平方分米)∴盒子的外表面积为()8522325a a b +平方分米;(2)当1a =,0.2b =时,85285223252312510.224a a b +=⨯+⨯⨯=(平方分米)则喷漆的费用为1524360⨯=(元).答:喷漆共需要360元.【变式1】(23-24七年级下·山东菏泽·期中)某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是()A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【答案】A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .【变式2】(22-23八年级上·福建泉州·阶段练习)已知:2210x x --=,则352020x x -+=.【答案】2022【分析】本题考查了整式的乘法的应用,熟练掌握求高次式子时的思路:降次是解题的关键.将2210x x --=变形为221x x =+,利用降次的思想求352020x x -+即可.解:∵2210x x --=,∴221x x =+,∴352020x x -+252020x x x =⋅-+()2152020x x x =+-+2252020x x x =+-+()22142020x x =+-+2022=故答案为:2022.【题型6】利用单项式乘以多项式求字母的值【例6】(21-22七年级下·河南驻马店·阶段练习)已知x (x ﹣m )+n (x +m )=2x +5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【答案】-7【分析】把x (x ﹣m )+n (x +m )去括号、合并同类项,然后根据与2x +5x -6对应项的系数相同,即可求得m 、n 的值,然后代入求值即可.解:x (x ﹣m )+n (x +m )=2x ﹣mx +nx +mn =2x +(n ﹣m )x +mn ,∴56n m mn -=⎧⎨=-⎩,则m (n ﹣1)+n (m +1)=n ﹣m +2mn =5﹣12=﹣7.【点拨】此题考查单项式乘多项式和代数式求值,解题关键在于掌握运算法则.【变式1】(23-24七年级下·河南周口·阶段练习)若()24x ax x x +=+,则a 的值为()A .2B .3C .4D .8【答案】C【分析】本题主要考查了单项式乘以多项式,根据单项式乘以多项式的计算法则求出()4x x +的结果即可得到答案.解:∵()24x ax x x +=+,∴224x ax x x +=+,∴4a =,故选:C .【变式2】(23-24七年级下·山东济南·阶段练习)要使()32412x x ax x -+++中不含有x 的四次项,则a =.【答案】2【分析】本题主要考查了多项式的混合运算.先算乘法,再合并,然后根据原多项式中不含有x 的四次项,可得20a -=,即可求解.解:()32412xxax x -+++45432x x a x x --+=-()4352x x a x =-+--,∵()32412xxax x -+++中不含有x 的四次项,∴20a -=,∴2a =.故答案为:2【题型7】计算多项式乘以多项式【例7】(24-25八年级上·全国·单元测试)计算:(1)()()()222323x x x x +---+;(2)22(1)(1)x x x x ++-+;(3)2(1)(2)(2)x x x x +-++【答案】(1)312x -;(2)421x x ++;(3)4244x x x ---.【分析】本题考查了多项式的乘法:(1)根据多项式乘多项式的运算法则计算,再合并同类项即可;(2)根据多项式乘多项式的运算法则计算,再合并同类项即可;(3)根据多项式乘多项式的运算法则计算,再合并同类项即可.解:(1)()()()222323x x x x +---+222436226x x x x x =+---+-312x =-.(2)22(1)(1)x x x x ++-+4323221x x x x x x x x =-++-++-+421x x =++.(3)2(1)(2)(2)x x x x +-++22(2)(2)x x x x =--++43232222224x x x x x x x x =++------4244x x x =---.【变式1】(22-23七年级下·甘肃张掖·期中)下列计算正确的是()A .()()324242ab ab a b ⋅-=B .()()22356m m m m +-=--C .()()245920y y y y +-=+-D .()()21454x x x x ++=++【答案】D【分析】本题主要考查了单项式乘以单项式,多项式乘以多项式,熟知相关计算法则是解题的关键.解:A 、()()324248ab ab a b =-⋅-,原式计算错误,不符合题意;B 、()()22233266m m m m m m m +-=-+-=--,原式计算错误,不符合题意;C 、()()2245452020y y y y y y y +-==-+---,原式计算错误,不符合题意;D 、()()22144454x x x x x x x ++=+++=++,原式计算正确,符合题意;故选:D .【变式2】(22-23七年级下·山东菏泽·期中)如果()()()()32912x x x x ---+-=,那么x 的值是.【答案】1【分析】本题考查了多项式乘以多项式,以及解一元一次方程,熟练掌握多项式乘以多项式的法则是解题的关键.根据多项式乘以多项式的法则进行计算,然后解一元一次方程即可.解:()()()()3291x x x x ---+-22236(99)x x x x x x =--+--+-1315x =-+∴13152x -+=,解得1x =,故答案为:1.【题型8】计算多项式乘以多项式化简求值【例8】(24-25八年级上·河南南阳·阶段练习)先化简,再求值:()()()222112a a a a a a +--+-,其中3a =-.【答案】2-a a ,12【分析】本题主要考查了整式的化简求值,先根据单项式乘以多项式的计算法则,多项式乘以多项式的计算法则去括号,然后合并同类项化简,最后代值计算即可.解:()()()222112a a a a a a +--+-()3232222222a a a a a a a =+--+--3232222222a a a a a a a=+---++2a a =-,当3a =-时,原式()()2339312=---=+=.【变式1】(23-24七年级下·安徽合肥·期中)我们规定a b ad bc cd=-,例如121423234=⨯-⨯=-,已知2523m n nm n m n+=-+-,则代数式2261m n --的值是()A .4B .5C .8D .9【答案】D【分析】本题主要查了整式的混合运算.根据新定义可得()()()2235m n m n n m n +---+=,从而得到235m n -=,再代入,即可求解.解:根据题意得:()()()2235m n m n n m n +---+=,∴22222235m mn mn n mn n n +---+-=,即235m n -=,∴()22232610m n m n -=-=,∴22611019m n --=-=.故选:D【变式2】(2024·湖南长沙·模拟预测)已知235a ab +=,则2()(2)2a b a b b ++-的值为.【答案】5【分析】本题考查整式的化简求值,把要求的式子展开化简后,利用整体思想求值即可.解:∵235a ab +=,∴22222()(2)222235a b a b b a ab ab b b a ab ++-=+++-=+=.故答案为:5.【题型9】(x+p)(x+q)型多项式相乘【例9】(22-23七年级下·辽宁沈阳·期中)先化简,再求值:()()()()()23333442x x x x x +-++---,其中2x =.【答案】1361x -,35-【分析】本题考查了整式的化简求值.熟练掌握平方差公式,完全平方公式,多顶式乘多项式法则,是解题的关键.先根据平方差公式,完全平方公式,多顶式乘多项式法则展开,合并同类项化简,最后将字母的值代入求解即可.解:()()()()()23333442x x x x x +-++---()()2229312444x x x x x =-+----+2229333641616x x x x x =-+---+-1361x =-,当2x =时,原式1326135=⨯-=-.【变式1】(23-24七年级下·辽宁锦州·阶段练习)若()()2315x x n x mx ++=+-,则mn 的值为()A .5-B .5C .10D .10-【答案】C【分析】此题考查了多项式的乘法,根据多项式的乘法法则展开对比得到3,315n m n +==-,求出m 、n 的值,即可得到答案.解:∵()()()2333x x n x n x n ++=+++,()()2315x x n x mx ++=+-,∴3,315n m n +==-,解得2,5m n =-=-∴()()2510mn =-⨯-=,故选:C【变式2】(22-23七年级下·江苏盐城·阶段练习)若()()228x m x x nx +-=+-,则2m n +=.【答案】8【分析】本题考查多项式乘以多项式,利用多项式乘以多项式的法则,将等式左边展开,进而求出,m n 的值,进一步求出代数式的值即可.解:()()()222228x m x x m x m x nx +-=+--=+-,∴2,28m n m -==,∴4,2m n ==,∴24228m n +=+⨯=;故答案为:8.【题型10】整式乘法中的不含某个字母问题【例10】(22-23七年级下·四川达州·期中)已知代数式()22mx x +与()232x nx ++积是一个关于x 的三次多项式,且化简后含2x 项的系数为1,求m 和n 的值.【答案】0m =,16n =【分析】此题考查了多项式乘多项式的计算能力,运用多项式乘多项式的运算法则进行求解即可.解:()()22232mx x x nx +++4323232264mx mnx mx x nx x=+++++()()43232264mx mn x m n x x =+++++,由题意得,0m =,261m n +=,解得0m =,16n =.【变式1】(23-24七年级下·全国·期中)已知多项式x a -与221x x +-的乘积中2x 的项系数与x 的项系数之和为4,则常数a 的值为()A .1-B .1C .2-D .2【答案】A【分析】根据多项式乘以多项式的计算法则得()()()()23221212x a x x x a x a x a -+-=+--++,然后根据“乘积中2x 的项系数与x 的项系数之和为4”,据此得到()()2124a a --+=,解此方程即可求出a .解:()()221x a x x -+-32222x x x ax ax a=+---+()()32212x a x a x a =+--++,乘积中2x 的项系数与x 的项系数之和为4,∴()()2124a a --+=,∴1a =-,故答案为:A .【变式2】(24-25八年级上·吉林长春·阶段练习)若()()23x m x x n +-+的积中不含2x x 、项,则m =,n =.【答案】39【分析】本题主要考查了多项式乘法中的无关型问题,先根据多项式乘以多项式的计算法则求出()()23x m x x n +-+的结果,再根据乘积中不含2x x 、项,即含2x x 、项的系数为0进行求解即可.解:()()23x m x x n +-+32233x x nx mx mx mn =-++-+()()3233x m x n m x mn =+-+-+,∵()()23x m x x n +-+的积中不含2x x 、项,∴3030m n m -=-=,,∴39m n ==,,故答案为:3;9.【题型11】多项式相乘中的几何问题【例11】(22-23八年级上·四川绵阳·期末)学校需要设计一处长方形文化景观,分为中央雕塑区和四周绿化区.中央雕塑区的长边为(33m -)米,短边为2m 米,绿化区外边沿的长边为(42m -)米,短边为(31m -)米.试比较雕塑区和绿化区的面积大小.(m 为正数)【答案】绿化区面积大于雕塑区面积.【分析】本题考查的是多项式的乘法运算与图形面积,先分别列式计算绿化区面积,雕塑区面积,再作差比较大小即可.解:绿化区面积为()()()4231233m m m m ----221246266m m m m m =--+-+2642m m =-+.雕塑区面积为()223366m m m m -=-.因为()()226426622m m m m m -+--=+,由m 为正数,所以得220m +>,即2264266m m m m -+>-,所以,绿化区面积大于雕塑区面积.【变式1】(23-24七年级上·湖南长沙·期末)下面四个整式中,不能..表示图中阴影部分面积的是()A .(4)(3)3x x x ++-B .24(3)x x ++C .24x x +D .(4)12x x ++【答案】C【分析】本题主要考查整式与图形,根据题意,结合图形,分别判断得到答案即可.解:A .图中阴影部分面积用整个长方形的面积-空白部分的面积,即(4)(3)3x x x ++-,故该选项不符合题意;B .图中阴影部分面积用右边阴影部分长方形的面积+左边阴影部分正方形的面积,即24(3)x x ++,故该选项不符合题意;C .24x x +只有左边阴影部分正方形的面积+右边上面阴影部分长方形的面积,缺少右边下面长方形的面积,故该选项符合题意;D .图中阴影部分面积用上面阴影长方形的面积+右边下面长方形的面积,即(4)12x x ++故该选项不符合题意;故选:C .【变式2】(23-24七年级下·全国·单元测试)有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片.如果要拼成一个长为()2a b +,宽为()32a b +的大长方形,那么需要C 类卡片张.【答案】7【分析】本题考查了多项式乘以多项式,计算出长为()2a b +,宽为()32a b +的大长方形的面积以及A 类、B 类卡片和长方形C 类卡片的面积,即可得出答案.解:长为()2a b +,宽为()32a b +的大长方形的面积为()()22222326432672a b a b a ab ab b a ab b ++=+++=++,A 类卡片的面积为:2a ,B 类卡片的面积为:2b ,C 类卡片的面积为:ab ,∴要拼成一个长为()2a b +,宽为()32a b +的大长方形,需要6块A 类卡片,2块B 类卡片,7块C 类卡片,故答案为:7.【题型12】多项式除以单项式【例12】(22-23七年级下·宁夏银川·期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,2211322xy x y xy xy ⨯=-+(1)求所捂的多项式;(2)若2132x y ==,,求所捂多项式的值.【答案】(1)621x y -+;(2)4.【分析】本题主要考查了代数式求值,多项式除以单项式:(1)根据乘除法互为逆运算,只需要计算出2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭的结果即可得到答案;(2)把2132x y ==,代入(1)所求结果中计算求解即可.解:(1)2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭621x y =-+,∴所捂的多项式为621x y -+;(2)当2132x y ==,时,21621621411432x y -+=⨯-⨯=-+=.【变式1】(2024·湖北武汉·模拟预测)若22233241216m x y x y x y ⨯=-,则m =()A .43x y -B .43x y-+C .43x y+D .43x y--【答案】B【分析】本题考查了多项式除以单项式,根据一个因数等于积除以另一个因数,即可解答.解:∵22233241216m x y x y x y ⨯=-,∴()233222121643443m x y x y x y y x x y =-÷=-=-+,故选:B .【变式2】(22-23七年级下·浙江温州·期末)若223615xy A x y xy =- ,则A 代表的整式是.【答案】25x y-【分析】本题考查的是多项式除以单项式,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算.根据多项式除以单项式的运算法则计算即可.解:()226153A x y xy xy-÷=2263153x y xy xy xy=÷-÷25x y =-.故答案为:25x y -.【题型13】整式乘法混合运算【例13】(23-24七年级下·贵州毕节·期末)先化简,再求值:(1)()()()()22224x y x y x y x x y -+-+--,其中1x =-,2y =.(2)已知2210x x +-=,求代数式()()()()21433x x x x x ++++-+的值.【答案】(1)2243x y +;16;(2)5-.【分析】本题主要考查了整式化简求值,解题的关键是熟练掌握整式混合运算法则,准确计算.(1)先根据整式混合运算法则进行化简,然后再代入数据进行计算即可;(2)先根据整式混合运算法则进行化简,然后再整体代入进行计算即可.解:(1)()()()()22224x y x y x y x x y-+-+--222224444x xy y x y x xy =-++--+2243x y =+,当1x =-,2y =时,原式()224132=⨯-+⨯412=+16=.(2)()()()()21433x x x x x ++++-+2222149x x x x x =+++++-2368x x =+-,∵2210x x +-=,∴221x x +=,∴原式()2328x x =+-318=⨯-38=-=5-.【变式1】(21-22六年级下·全国·单元测试)等式()()324322xyz x y z y ⎡⎤÷-⋅=⎣⎦中的括号内应填入()A .6538x y z B .228x y zC .222x y zD .222x y z±【答案】C【分析】运用整式的乘法运算法则、乘除法互为逆运算及幂的运算法则求解.解:由原式,得()()32432224366322322428(2)y xyz x y z y x y z x y z x y z x y z ⎡⎤=⋅-⋅=⋅⋅==⎣⎦∴括号中式子应为222x y z .故选C .【点拨】本题主要考查整式的乘法运算、乘除法互为逆运算、幂的运算法则等知识;能够运算乘、除法互为逆运算的性质,对原等式进行变形是解题关键.【变式2】(2024·福建厦门·二模)已知11x x-=-,则()()22131x x x +-+的值为.【答案】2【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则,利用整体代入思想求解是解答的关键.先根据11x x -=-得出21x x +=,然后利用完全平方公式、单项式乘多项式化简原式,再整体代值求解即可.解:∵11x x-=-,∴21x x +=,()()22131x x x +-+2244133x x x x=++--21x x =++11=+2=.第三部分【中考链接与拓展延伸】【题型14】直通中考【例1】(2024·山东青岛·中考真题)下列计算正确的是()A .223a a a +=B .523a a a ÷=C .235()a a a -⋅=-D .()23622a a =【答案】B【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘除法、积的乘方逐项运算即可判断求解,掌握整式的运算法则是解题的关键.解:A 、23a a a +=,该选项错误,不合题意;B 、523a a a ÷=,该选项正确,符合题意;C 、235()a a a -⋅=,该选项错误,不合题意;D 、()23624a a =,该选项错误,不合题意;故选:B .【例2】(2023·黑龙江大庆·中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,7()a b +展开的多项式中各项系数之和为.【答案】128【分析】仿照阅读材料中的方法将原式展开,即可得出结果.解:根据题意得:()5a b +展开后系数为:1,5,10,10,5,1,系数和:515101051322+++++==,()6a b +展开后系数为:1,6,15,20,15,6,1,系数和:61615201561642++++++==,()7a b +展开后系数为:1,7,21,35,35,21,7,1,系数和:71721353521711282+++++++==,故答案为:128.【点拨】此题考查了多项式的乘法运算,以及规律型:数字的变化类,解题的关键是弄清系数中的规律.【题型15】拓展延伸【例1】(23-24八年级上·四川眉山·期中)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…根据规律计算:202220212020201943222222222-+-+⋯⋯+-+-的值是()A .2023223-B .202321-C .20232-【答案】A 【分析】根据题中规律每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项大1,减数都为1,即可得到规律为()()12321111n n n n x x x x x x x x --+-+++++++=- ,利用规律,当2x =-,2022n =时,代入其中即可求解.本题考查了平方差公式、及数字类的规律题,解题的关键是认真阅读,总结规律,并利用规律解决问题.解:由2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…观察发现:()()12321111n n n n x x x x x x x x --+-+++++++=- ,当2x =-,2022n =时,得202220212020201943220232122222222121()()()---+-+-+-+=-- ,∴2023202320232022202120202019432212121222222221333()----+-+-+-+-+===-- ,∴202320232022202120202019432212222222222133+--+-+-+-=-= .故选:A .【例2】(2024七年级上·全国·专题练习)按如图所示的程序进行计算,如果第一次输入x 的值是3-,则第2024次计算后输出的结果为.【答案】8-【分析】本题考查了规律型:数字的变化类,代数式求值,仔细计算,观察出即从第2次开始,以5-、8-、3-为一个循环组循环出现,是解题的关键.总结规律后结合202436742÷=⋅⋅⋅,即可得到答案.解:第1次输出的结果为:()33191522⨯----==-;第2次输出的结果为:()351151822⨯----==-;第3次输出的结果为:8232-+=-;第4次输出的结果为:()33191522⨯----==-;第5次输出的结果为:()351151822⨯----==-;第6次输出的结果为:8232-+=-…,则从第1次输出开始,以5-、8-、3-为一个循环组循环出现,∵202436742÷=⋅⋅⋅,∴第2024次输出的结果为8-.故答案为:8-.。
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
第十四章 整式的乘法与因式分解14.3.2 公式法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,能用完全平方公式分解因式的是A .2441x x -+B .2631x x ++C .2242x xy y ++D .29181x x ++ 【答案】A【解析】22441(21)x x x -+=-.故选A .2.分解因式x 4-1的结果是A .(x +1)(x -1)B .(x 2+1)(x 2-1)C .(x 2+1)(x +1)(x -1)D .(x +1)2(x -1)2 【答案】C3.将多项式x -x 3因式分解正确的是A .x (x 2-1)B .x (1-x 2)C .x (x +1)(x -1)D .x (1+x )(1-x ) 【答案】D【解析】x -x 3=x (1-x 2)=x (1-x )(1+x ).故选D .4.把代数式x 3-4x 2+4x 分解因式,结果正确的是A .x (x 2-4x +4)B .x (x -4)2C .x (x +2)(x -2)D .x (x -2)2 【答案】D【解析】原式=x (x 2-4x +4)=x (x -2)2,故选D .5.下列各式分解因式正确的是A .x 2+6xy +9y 2=(x +3y )2B .2x 2-4xy +9y 2=(2x -3y )2C .2x 2-8y 2=2(x +4y )(x -4y )D .x (x -y )+y (y -x )=(x -y )(x +y ) 【答案】A 【解析】A 、x 2+6xy +9y 2=(x +3y )2,正确;B 、2x 2-4xy +9y 2无法分解因式,故此选项错误;C 、2x 2-8y 2=2(x +2y )(x -2y ),故此选项错误;D 、x (x -y )+y (y -x )=(x -y )2,故此选项错误.故选A .6.把3223x x y xy y +--分解因式,标准答案是A .22()()x y x y +-B .22()()x x y y x y +-+C .2()()x y x y +-D .2()()x y x y +-【答案】D【解析】x 3+x 2y -xy 2-y 3=x 2(x +y )-y 2(x +y )=(x +y )(x 2-y 2)=(x +y )2(x -y ),故选D .7.多项式29x kx -+能用公式法分解因式,则k 的值为A .3±B .6±C .3D .6 【答案】B【解析】根据题意得:x 2-kx +9=(x ±3)2=x 2±6x +9,∴k =±6.故选B . 二、填空题:请将答案填在题中横线上.8.分解因式:2a 2-4a +2=__________.【答案】22(1)a -【解析】原式=2(a 2-2a +1)=2(a -1)2.故答案为:2(a -1)2.9.因式分解:3x 3-12x =__________.【答案】3x (x +2)(x -2)【解析】3x 3-12x =3x (x 2-4)=3x (x +2)(x -2),故答案为:3x (x +2)(x -2). 10.若5x y +=,2xy =,则32232x y x y xy ++=__________.【答案】50三、解答题:解答应写出文字说明、证明过程或演算步骤.11.把下面各式分解因式:(1)4x 2-8x +4;(2)x 2+2x (x -3y )+(x -3y )2.【解析】(1)4x 2-8x +4=4(x 2-2x +1)=4(x -1)2.(2)x2+2x(x-3y)+(x-3y)2=(x+x-3y)2=(2x-3y)2.12.阅读材料:把代数式x2-6x-7因式分解,可以如下分解:x2-6x-7=x2-6x+9-9-7=(x-3)2-16=(x-3+4)(x-3-4)=(x+1)(x-7).(1)探究:请你仿照上面的方法,把代数式x2-8x+7因式分解;(2)拓展:把代数式x2+2xy-3y2因式分解:当xy=__________时,代数式x2+2xy-3y2=0.。
八年级数学上册第十四章整式的乘法与因式分解知识汇总笔记单选题1、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.2、分解因式4x2﹣y2的结果是()A.(4x+y)(4x﹣y)B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y)D.2(x+y)(x﹣y)答案:C分析:按照平方差公式进行因式分解即可.解:4x2﹣y2=(2x+y)(2x﹣y).故选:C.小提示:此题主要考查了公式法分解因式,正确应用公式是解题关键.3、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.4、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.5、计算−a2⋅(a2)3的结果是()A.a8B.-a8C.a7D.-a7答案:B分析:先根据幂的乘方运算法则化简,再根据同底数幂的乘法法则计算即可.解:-a2•(a2)3=-a2•a6=-a8.故选:B.小提示:本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.6、用简便方法计算,将99×101变形正确的是()A.99×101=1002+12B.99×101=(100−1)2C.99×101=1002−12D.99×101=(100+1)2答案:C分析:根据平方差公式即可求解.99×101=(100-1)(100+1)=1002−12故选C.小提示:此题主要考查平方差公式,解题的关键是熟知平方差公式的应用.7、若a=2020×2021+1,b=20202﹣2020×2021+20212,在下列判断结果正确的是()A.a<b B.a=b C.a>b D.无法判断答案:B分析:根据完全平方公式的变形,将b化简,进而与a比较即可求解a=2020×2021+1,b=20202﹣2020×2021+20212=(2020﹣2021)2+2020×2021=2020×2021+1,故a=b.故选:B.小提示:本题考查了完全平方公式的变形,掌握完全平方公式的变形是解题的关键.8、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k +1)=±4,解得:k =1或-3,故D 正确.故选:D .小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.9、若2n+2n+2n+2n=2,则n=( )A .﹣1B .﹣2C .0D .14答案:A分析:利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n =0,从而解关于n 的方程即可.∵2n +2n +2n +2n =2, ∴4×2n=2, ∴2×2n=1, ∴21+n=1, ∴1+n=0,∴n=-1,故选A .小提示:本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即am •an =am +n(m ,n 是正整数).10、已知10a =20,100b =50,则12a +b +32的值是( )A .2B .52C .3D .92 答案:C分析:根据同底数幂的乘法10a ⋅100b =103,可求a +2b =3再整体代入即可.解: ∵10a =20,100b =50,∴10a ⋅100b =10a+2b =20×50=1000=103,∴a +2b =3,∴12a +b +32=12(a +2b +3)=12(3+3)=3.故选:C .小提示:本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.填空题11、若x +y =4,a ,b 互为倒数,则12(x +y)+5ab 的值是_________ 答案:7分析:根据a ,b 互为倒数,可得ab=1;然后把x +y =4,ab=1代入12(x +y)+5ab ,计算即可. 解:∵a ,b 互为倒数,∴ab=1,又∵x +y =4,∴12(x +y)+5ab=12×4+5×1=2+5=7.故答案为7.小提示:本题考查代数式求值、倒数的概念、整体代入的思想,解题的关键是要明确:互为倒数的两个数的乘积是1.12、定义|a c b d |为二阶行列式,规定它的运算法则为|a c b d |=ad -bc.则二阶行列式|x −3x −2 x −4x −3|的值为___. 答案:1由题意可得:|x −3x −2 x −4x −3| =(x −3)(x −3)−(x −4)(x −2)=x2−6x+9−(x2−6x+8)=1.故答案为1.13、若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为_____.答案:12分析:对所求代数式运用平方差公式进行因式分解,然后整体代入求值.解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.小提示:本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.14、已知x m=5,x n=3,则x2m+n=________.答案:75分析:利用同底数幂的乘法及幂的乘方运算法则对原式进行变形,然后代入计算即可.解:x2m+n=x2m⋅x n=(x m)2⋅x n∵x m=5,x n=3,∴原式=52×3=75,所以答案是:75.小提示:本题考查幂的运算,掌握同底数幂的乘法及幂的乘方运算法则是解题关键.15、如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是______________;答案:11分析:把x=1代入运算程序的y=6<9,无法输出,再把x=2代入运算程序得y=11>9,输出答案,问题得解.解:把x=1代入y=x2+2x+3得y=1+2+3=6<9,无法输出,∴把x=1+1=2代入y=x2+2x+3得y=4+4+3=11>9,输出答案.所以答案是:11小提示:本题考查了根据运算程序进行计算,理解运算程序是解题关键.解答题16、我们定义:三角形=a b⋅a c,五角星=z⋅(x m⋅y n),(1)求的值;(2)若=4,求的值.答案:(1)27;(2)32分析:(1)根据定义运算规律计算即可;(2)根据定义三角形和五角星运算即可.解:(1)由题意有=3×32=27(2)∵=4∴3z×32y=4即32y+z=4∵=2×(81y×9z)=2×(32y+z)2=2×16=32小提示:本题主要考查新运算,读懂新运算,并运用是解题的关键.17、计算:(1)(−2a2b)3⋅(3b2−4a+6);(2)(−2m)2⋅(14m2−5m−3).答案:(1)−24a6b5+32a7b3−48a6b3(2)m4−20m3−12m2分析:(1)先算积的乘方和幂的乘方,再算单项式乘多项式即可;(2)先算积的乘方,再算单项式乘多项式即可.(1)(−2a2b)3⋅(3b2−4a+6)=-8a6b3⋅(3b2-4a+6)=-24a6b5+32a7b3-48a6b3;(2)(−2m)2⋅(14m2−5m−3)=4m2⋅(14m2−5m−3)=m4−20m3−12m2小提示:本题主要考查单项式乘多项式,积的乘方和幂的乘方,解答的关键是对相应的运算法则的掌握.18、比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1 2x;②当x=0时,x2+1 2x;③当x=﹣2时,x2+1 2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.答案:(1)①=;②>;③>;(2)x2+1≥2x,理由见解析分析:(1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案;(2)根据完全平方公式,可得答案.解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.所以答案是:=;>;>.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.小提示:本题考查了求代数式的值,有理数的大小比较,两个整式大小比较及证明,公式法因式分解、不完全归纳法,解题关键是理解根据“A-B”的符号比较“A、B”的大小.。