酶学基础(一)
- 格式:ppt
- 大小:1.18 MB
- 文档页数:35
生物化学中的酶学和代谢调节在生物化学中,酶是生物体内分子转化的催化剂。
酶的活性和稳定性对于维持生命活动至关重要。
生物体内的代谢作用也受到多种因素的调节,包括酶的磷酸化、酶的合成和降解等。
本文将对酶学和代谢调节进行探究。
1. 酶学基础酶是一种大分子催化剂,它能够加速化学反应的发生,但本身在反应过程中不被消耗。
酶结构多样,根据其化学性质和催化机理可分为如下几类:(1)氧化还原酶,如乳酸脱氢酶,它能够催化乳酸向丙酮酸的反应;(2)水解酶,如淀粉酶,它能够催化淀粉向糖的反应;(3)加合酶,如胰岛素,它能够催化葡萄糖向糖原的反应;(4)转移酶,如转移酶,它能够催化酰基向另一个化合物转移的反应。
酶的活性受到多种因素影响,包括温度、pH值、底物浓度等。
温度过高或过低均会影响酶的活性,常温下酶的活性最佳。
pH值也会对酶的活性产生影响,不同酶的最佳pH值也各不相同。
底物浓度的增加能够促进酶的活性,但过高的底物浓度反而会抑制酶的活性。
2. 酶的代谢调节酶的活性和稳定性受到多种因素的调节,包括酶的磷酸化、酶的合成和降解等。
(1)磷酸化磷酸化是常见的酶的调节方式之一。
磷酸化后的酶结构发生变化,从而影响其活性。
举例来说,当肝细胞内糖原的水解后,储存在细胞内的糖原酶会被磷酸化,从而失去活性。
当血糖水平降低时,胰岛素分泌减少,体内糖原水解停止,其储存的糖原酶脱磷酸还原至活性状态,这样可以保证糖原的储存。
(2)酶的合成和降解新的酶可以通过蛋白质合成过程进行合成。
当细胞内需要某种酶时,核酸可以被转录成相应的RNA,RNA再通过转译合成相应的蛋白质酶。
同时,当体内不需要某种酶时,可通过降解分解酶来维持体内代谢平衡。
例如,当饥饿状态下蛋白分解较大时,酪氨酸酶可以被分解,从而起到降解蛋白质的作用。
3. 酶缺失症酶缺失症是一种常见的代谢性疾病,其特点是体内缺乏某种酶,从而导致代谢异常。
常见的酶缺失症包括苯丙酮尿症和半乳糖血症等。
苯丙酮尿症是体内苯丙氨酸代谢缺陷造成的,如果不及时治疗,可能会导致智力低下和神经系统损伤,严重的甚至可能危及生命。
分子生物学复习资料一、DNA的生物合成1、酶学基础A 超螺旋构象变化及与解链有关的酶和蛋白a. 拓扑异构酶II型(引入负超螺旋)Ⅱ型酶(Topoisomerase II)由ATP的水解提供能量,在DNA的双链上产生切口,使另外一条双链DNA得以穿过。
原核:gyrase (促旋酶Gyrase)利用ATP水解提供能量,向DNA分子引入负超螺旋,从而抵消DNA复制中产生的正超螺旋。
真核:TopoⅡ*Topoisomerase I:在DNA的一股链上产生一个切口,使另一条链得以穿越。
b. 解链酶helicase(打开DNA双链)催化DNA双螺旋解链, 具有解链的极性和移位酶活性。
原核:DnaB (5’3’)六聚体ATPaseRep (3’5’) 单体,UvrD真核:与pol 共纯化因子(5’3’)与pol 共纯化因子(3’5’)c. 单链DNA结合蛋白(保持单链状态)原核:单链结合蛋白SSB (single strand binding protein)真核:复制蛋白A RPA /复制因子A RF-AB 引发酶(primase)作用: 合成RNA引物E. coli : DnaG 基因编码,是一种特殊的RNA聚合酶,其引发活性依赖于DnaB(解链酶)蛋白。
真核生物:pol 的p49 p58亚基具有引发酶的活性。
C DNA聚合酶(DNA polymerase)主要用于复制的DNA聚合酶:原核: DNA聚合酶III真核: pol ( RNA引物的合成)pol / pol ε(DNA的复制)PCNA (滑动钳)RFC (钳载复合物)原核a. DNA聚合酶I大片段(klenow片段):5’3’聚合酶活性(中等)3’5’外切酶活性(校对)小片段:5’3’外切酶活性(切RNA引物)主要生物学功能:除去RNA引物时,后滞链的修复;DNA损伤的修复。
应用:缺口翻译DNA聚合酶I不是DNA复制的主要聚合酶*1969年,Paula Delucia和John Cairns分离得到的E.coli 突变菌株polA-,其DNA pol的活性只有正常菌株的1%,但是仍然可以正常分裂。
第五章酶类第一节概述一、定义酶是一类具有催化活性和特定空间构象的生物大分子,包括蛋白质和核酸等。
绝大多数酶的本质是蛋白质或蛋白质与辅酶的复合体,但某些RNA分子也具有酶活性,将这些化学本质为RNA的酶称为核糖酶。
某些抗体也具有催化活性,这类酶称为抗体酶,是一种具有催化功能的抗体分子,在其可变区赋予了酶的属性。
二、人们对酶的认识过程1833年佩延(Payen)和Persoz从麦芽中抽提出一种对热敏感的物质,这种物质能将淀粉水解成可溶性糖,被称为淀粉糖化酶(diastase),意思是“分离”。
所以后人命名酶时常加词尾-ase。
由于他们用乙醇沉淀等方法提纯得到了无细胞的酶制剂,并发现了酶的催化特性和热不稳定性,所以一般认为他们首先发现了酶。
19世纪西方对发酵现象的研究推动了对酶的进一步研究。
巴斯德提出“酵素”一词,认为只有活的酵母细胞才能进行发酵。
现在日本还经常使用“酵素”一词(ferment)。
1878年德国人库恩(Kuhne)提出“Enzyme”一词,意为“在酵母中”。
1896年德国人巴克纳(Buchner)兄弟用石英砂磨碎酵母细胞,得到了能催化发酵的无细胞滤液,证明发酵是一种化学反应,与细胞的活力无关。
这项发现涉及到了酶的本质,有人认为这是酶学研究的开始。
1913年米凯利斯(Michaelis)和门顿(Menten)利用物理化学方法提出了酶促反应的动力学原理—米氏学说,使酶学可以定量研究。
1926年美国人J. B. Sumner从刀豆中结晶出脲酶(第一个酶结晶),并提出酶是蛋白质的观点。
后来陆续得到多种酶的结晶,证明了这种观点,萨姆纳因而获得1947年诺贝尔奖。
此后多种酶被发现、结晶、测定结构,并产生了酶工程等分支学科。
进入80年代后,核糖酶(ribozyme)、抗体酶、模拟酶等相继出现,酶的传统概念受到挑战。
1982年Cech等发现四膜虫26S rRNA前体具有自我剪接功能,并于1986年证明其内含子L-19 IVS具有多种催化功能。
一、名词解释:5T*21 Kcat:酶转换数。
又称分子活性或摩尔催化活性,表示在单位时间内,酶分子中每个活性中心或每个分子酶所能转化的底物分子数,单位为min-,是酶催化效率的一个指标。
2溶解氧:溶解在培养基中的氧气,提供给在培养基中的产酶细胞使用。
3临界氧浓度:微生物对发酵液中溶解氧浓度的不影响其正常代谢的最低要求。
4氧载体:与水不互溶,对微生物无害,具有较高溶氧能力的有机物。
5通气量:单位时间内流经培养液的气体量6溶氧速率/传氧率:表示在单位时间内培养液溶氧浓度的改变耗氧速率:单位时间内细胞进行呼吸作用消耗的氧量7酶的化学修饰:在较温和的条件下,以可控制的方式使酶同某些化学试剂发生特异反应,从而引起单个氨基酸残基或其功能基团发生共价的化学改变。
8模拟酶/人工酶:根据酶作用的原理,模拟酶的活性中心及催化机理,用有机化学及生物学方法合成的具有专一催化功能的催化剂。
9肽酶:模拟天然酶的活性部位,人工合成的具有催化活性的多肽。
10抗体酶:具有催化功能的抗体分子。
11印记酶:利用分子印记技术(MIP,即制备对某一化合物具有选择性的聚合物的过程)制备的人工模拟酶。
12融合酶:将两个或多个酶分子组合在一起所形成的融合蛋白。
13 SDM:定点突变技术。
指在基因的特定位点引入突变,即通过取代、插入或删除已知DNA序列中特定的核苷酸序列来改变酶蛋白结构中某个或某些特定的氨基酸,以此来提高酶对底物的亲和力,增强酶的专一性等。
14酶分子的定向进化:属于蛋白质的非合理设计,它不需要事先了解酶的空间结构和催化机制,人为地创造特殊的进化条件,模拟自然进化机制,在体外改造酶基因,并定向选择出所需性质的突变酶。
15固定化酶:用物理或化学手段定位在限定的空间区域,并使其保持催化活性,可重复利用的酶16固定化酶的活力:是固定化酶催化某一特定化学反应的能力,其大小可用在一定条件下它所催化的某一反应的反应初速度来表示。
固定化酶的比活:每克干固定化酶所具有的酶活力单位数。