电阻电路的等效变换
- 格式:ppt
- 大小:403.50 KB
- 文档页数:16
电阻的等效变换技巧电阻的等效变换技巧是电路分析中常用的一种方法,通过将电路中的电阻按照等效电路的要求进行变换,可以简化复杂的电路分析问题,提高分析的效率。
下面将介绍电阻的串、并联、三角形转星型等效变换技巧。
1. 串联电阻的等效变换当若干个电阻串联时,可以通过求和的方式得到等效电阻。
假设要将电阻R1、R2、R3串联,则它们的等效电阻为Req = R1 + R2 + R3。
这是因为电流在串联电路中是恒定的,所以电阻的总和就是电流通过的路径上的总阻抗。
2. 并联电阻的等效变换当若干个电阻并联时,可以通过求倒数和再求倒数的方式得到等效电阻。
假设要将电阻R1、R2、R3并联,则它们的等效电阻为Req = (1/R1 + 1/R2 + 1/R3)^-1。
这是因为电压在并联电路中是恒定的,所以电阻的倒数之和的倒数就是电流通过的总阻抗。
3. 三角形转星型等效变换在某些情况下,三角形电阻网络需要转换为星型电阻网络以便于分析。
假设有三个电阻Ra、Rb、Rc构成的三角形网络,可以通过以下公式得到等效电阻值:Rab = (Ra * Rb + Rb * Rc + Rc * Ra) / (Rc)Rac = (Ra * Rb + Rb * Rc + Rc * Ra) / (Rb)Rb= (Ra * Rb + Rb * Rc + Rc * Ra) / (Ra)这是因为在三角形电阻网络中,可以将其中任意两个电阻并联得到一个新的等效电阻,再将得到的等效电阻与剩余的电阻串联,最后得到总的等效电阻。
以上是电阻的等效变换技巧的基本介绍,这些方法可以帮助我们简化复杂的电路分析问题,提高分析的效率。
在实际应用中,可以根据具体情况选择不同的等效变换方法,以便更好地解决问题。
同时,还可以通过使用等效变换技巧,将复杂电路转换为简单的等效电路,以便更好地理解和分析电路的工作原理。
电阻电路的等效变换电阻电路的等效变换是指将一个电阻电路转化为另一个等效的电阻电路,使得两个电路在电学性质上完全相同。
等效变换在电路分析和设计中起着重要的作用,能够简化电路分析过程,提高计算效率。
一、串联电阻的等效变换串联电阻是指多个电阻按顺序连接在一起,电流依次通过每个电阻。
当电路中有多个串联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个串联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,串联电阻中的电流相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U / I1,R2 = U / I2。
在串联电路中,电流I1通过R1,电流I2通过R2,由于串联电路中电流只有一个路径,所以I1 = I2。
将上述两个等式相等,可得到R1 / I1 = R2 / I2,即R1 / R2 = I1 / I2。
由此可推导出串联电阻的等效电阻为Req = R1 + R2。
二、并联电阻的等效变换并联电阻是指多个电阻同时连接在一起,电流分别通过每个电阻。
当电路中有多个并联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个并联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,电压在并联电路中相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U1 / I,R2 = U2 / I。
在并联电路中,电压U1作用在R1上,电压U2作用在R2上,由于并联电路中电压相同,所以U1 = U2。
将上述两个等式相等,可得到R1 / U1 = R2 / U2,即R1 / R2 = U1 / U2。
由此可推导出并联电阻的等效电阻为1 / Req = 1 / R1 + 1 / R2。
三、星型-三角形转换星型电阻网络和三角形电阻网络是常见的电阻网络拓扑结构。
在电路分析中,有时需要将星型电阻网络转换为三角形电阻网络,或将三角形电阻网络转换为星型电阻网络,以便于进行电路分析。
第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。
2. 电源的串联、并联及等效变换。
3. “实际电源”的等效变换。
4. 输入电阻的求法。
2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。
表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。
2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。
2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。