电路基础 电阻电路的等效变换.
- 格式:ppt
- 大小:983.50 KB
- 文档页数:28
■ _________________________________________________秦二五五阻竜賂鬲看效交鎭5 MT\ 2-2『WL略g*j»c凭. r -「电m 的■!»"井JBi 1-「削血的、知联结*>^洒联结的帶玻^^换'2-5 f 电压■、电汶4K的*税加井联11 2-6「4&际他sRftdKjn.st及如nat. 72-7r«r入电》1•重点:1.电路等效的概念2.电阻的串、并联3.电阻的Y・A变换4.电压源和电流源的等效变换2-1引言•电阻电路仅由电源和线性电阻构成的电路。
①欧姆定律和基尔霍夫定律是分析电•分析方法阻电路的依据.②等效变换的方法,也称化简的方法・IW回,『Wk I下賈***yuj^" ...... .... . 一組由从旨•麦以2-2电路的等效变换1 •二端电路(网络)任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一个端子流出的电流,则称这一电路为二端网络(或一端口网络)。
・回「王廣r下V2-3电阻的串联和并联1.电阻串联R\①电路特点+ HI - + W & - + 冷(a)各电阻顺序连接,流过同一电流(KCL)。
(b)总电压等于各串联电阻的电压之和(KVL)。
以=叫+••• + '" --- + 叫t 回,:上贡「下IT.. ....2. 电阻并联(a)各电阻两端为同一电压(KVL)。
(b)总电流等于流过各并联电阻的电流之和(KCL).i =八 + 02+ + L+「込回,:上贡「下IT② 等效电阻■:~I/. RH 血人dij KCL: / = /1 +,2+ …+ S+ ' * +/…= U/R\ +M /7?2 + 十 M /R n=M (1//?]+ 1/7?2—H '/RJ=uG 門na = G + G ----------- <7 =牙 G > aoq12nk k①电路特点HiIO — +ftU迟回,上黃丨下帀《隽捡 等效电导等于并联的各电导之和.例3-2两电阻的分流.R 显心1冬_叽 刊 \R +1/ RjR\ + RjlR\ .二 RJ1//?+1做,一 R\+Rjz, = —―~~—— i = -----1 R + \ K 、 & +&------- 1 --------- 1 -------- hR' RRfI ③并联电阻的分流 IL u/R,kk_一 一/ ~ u! R eq上黃丨下帀1/尺2即 <老II --------- ---- ------- ——亠“ • 亠亠J 亠亠A 亠亠—亠■亠▲ »■■■■•亠令午+亠▲亠▲▲亠▲▲“ 亠亠.亠亠 S 亠亠1 从以上例题可得求解串、并联电路的一般步骤:①求出等效电阻或等效电导.②应用欧姆定律求出总电压或总电流.③应用欧姆定律或分压.分流公式求各电阻上的削流和电压《以上的关键在于识别各电阻的串联.并联关系!求"Rah,Red o(5 + 5)x 15 +(y (5 + 5)+ 15(15 • 5)X 5uh —例3・6求:。
电阻电路的等效变换电阻电路的等效变换是指将一个电阻电路转化为另一个等效的电阻电路,使得两个电路在电学性质上完全相同。
等效变换在电路分析和设计中起着重要的作用,能够简化电路分析过程,提高计算效率。
一、串联电阻的等效变换串联电阻是指多个电阻按顺序连接在一起,电流依次通过每个电阻。
当电路中有多个串联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个串联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,串联电阻中的电流相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U / I1,R2 = U / I2。
在串联电路中,电流I1通过R1,电流I2通过R2,由于串联电路中电流只有一个路径,所以I1 = I2。
将上述两个等式相等,可得到R1 / I1 = R2 / I2,即R1 / R2 = I1 / I2。
由此可推导出串联电阻的等效电阻为Req = R1 + R2。
二、并联电阻的等效变换并联电阻是指多个电阻同时连接在一起,电流分别通过每个电阻。
当电路中有多个并联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个并联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,电压在并联电路中相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U1 / I,R2 = U2 / I。
在并联电路中,电压U1作用在R1上,电压U2作用在R2上,由于并联电路中电压相同,所以U1 = U2。
将上述两个等式相等,可得到R1 / U1 = R2 / U2,即R1 / R2 = U1 / U2。
由此可推导出并联电阻的等效电阻为1 / Req = 1 / R1 + 1 / R2。
三、星型-三角形转换星型电阻网络和三角形电阻网络是常见的电阻网络拓扑结构。
在电路分析中,有时需要将星型电阻网络转换为三角形电阻网络,或将三角形电阻网络转换为星型电阻网络,以便于进行电路分析。