广东省2010年高考数学 直线与圆最新联考试题分类汇编(8)
- 格式:doc
- 大小:155.50 KB
- 文档页数:11
广东省各地市2010年高考数学最新联考试题(3月-6月)分类汇编第7部分:立体几何一、选择题:7. (广东省惠州市2010届高三第三次调研理科) 用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( ).A .6B .7C .8D .9【答案】A【解析】由正视图、侧视图可知,体积最小时,底层有3个小正方体,上面有2个,共5个;体积最大时,底层有9个小正方体,上面有2个,共11个,故这个几何体的最大体积与最小体积的差是6.故选A 9.(广东省惠州市2010届高三第三次调研文科)如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那 么这个几何体的全面积为 ( ) A .3π2B .2πC .3πD .4π 【答案】A【解析】由三视图知空间几何体为圆柱,∴全面积为2113π()22π1π222⨯⨯+⨯⨯=,∴选A . 【考点定位】本题考查立体几何中三视图,三视图是新课标的新增内容,在以后的高考中有加大的趋势。
【备考要点】复习时,仍要立足课本,务实基础。
(3)(广东省江门市2010届高三数学理科3月质量检测试题)如图,在矩形ABCD 中,E BC AB ,3,4==是CD 的中点,沿AE 将ADE ∆折起,使二面角B AE D --为︒60,则四棱锥ABCE D -的体积是( A )A 、13399 B 、133927 C 、13 D 、131327 2.(2010年3月广东省广州市高三一模数学理科试题)设一地球仪的球心为空间直角坐标系的原点O ﹐球面上有两个点A ,B 的坐标分别为()1,2,2A ,()2,2,1B -,则AB =( C )A .18B .12C .D .5.(2010年3月广东省广州市高三一模数学理科试题)已知p :直线a 与平面α内无数条直线垂直,q :直线a 与平面α垂直.则p 是q 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由线面垂直的判定定理容易得出答案B.【考点定位】本题考查立体几何中垂直关系的判定以及简易逻辑的有关知识.这两部分知识都是高考的重点,在高考中选择题、填空题和解答题出现,同时在知识的交汇点命题也是高考的热点. 【备考要点】立足课本,务实基础,同时要注意各部分知识的整合.3.(2010年3月广东省深圳市高三年级第一次调研考试理科)如图1,一个简单组合体的正视图和侧视图都是由一个正方形与一个正三角形构成的相同的图形, 俯视图是一个半径为3的圆(包括圆心).则该 组合体的表面积(各个面的面积的和)等于( C ) A .π15 B .π18 C .π21 D .π245.(2010年3月广东省深圳市高三年级第一次调研考试文科)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是( B )A .4+B .12C .D .82.(2010年3月广东省深圳市高三年级第一次调研考试文科)已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题: 11.(2010年广东省揭阳市高考一模试题理科) 某师傅用铁皮制作一封闭的工件,其直观图的三视 图如右图示(单位长度:cm ,图中水平线与竖线垂直), 则制作该工件用去的铁皮的面积为 2cm . (制作过程铁皮的损耗和厚度忽略不计)DC BAP【答案】2100(3cm【解析】由三视图可知,该几何体的形状如图,它是底面为正方形 各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积为100(3S =2cm .【考点定位】本题以实际应用题为背景考查立体几何中的三视图. 三视图是新课标的新增内容,在以后的高考中有加在的力度. 13.(2010年3月广东省广州市高三一模数学理科试题)如图4,点O 为正方体ABCD A B C D ''''-的中心,点E 为面B BCC ''的中心,点F 为B C ''的中点,则空间四边形D OEF '在该正方体的面上的正投影可能是 (填出所有可能的序号).①②③三、解答题 18.(2010年3月广东省广州市高三一模数学理科试题)(本小题满分14分)如图6,正方形ABCD 所在平面与圆O 所在平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在平面,垂足E 是圆O 上异于C 、D 的点,3AE =,圆O 的直径为9. (1)求证:平面ABCD ⊥平面ADE ;(2)求二面角D BC E --的平面角的正切值. 18.(本小题满分14分)(本小题主要考查空间线面关系、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵AE 垂直于圆O 所在平面,CD 在圆O 所在平面上,∴AE ⊥CD .在正方形ABCD 中,CD AD ⊥,∵AD AE A =,∴CD ⊥平面ADE . ∵CD ⊂平面ABCD ,∴平面ABCD ⊥平面ADE .(2)解法1:∵CD ⊥平面ADE ,DE ⊂平面ADE ,∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-,在Rt △ADE 中,22229DE AD AE a =-=-, 由22819a a -=-,解得,a =∴6DE ==.过点E 作EF AD ⊥于点F ,作FGAB 交BC 于点G ,连结GE ,由于AB ⊥平面ADE ,EF ⊂平面ADE , ∴EF AB ⊥. ∵AD AB A =,∴EF ⊥平面ABCD . ∵BC ⊂平面ABCD ,∵BC FG ⊥,EF FG F =,∴BC ⊥平面EFG . ∵EG ⊂平面EFG , ∴BC EG ⊥.∴FGE ∠是二面角D BC E --的平面角.在Rt △ADE中,AD =3AE =,6DE =, ∵AD EF AE DE ⋅=⋅,∴5AE DE EF AD ⋅===. 在Rt △EFG中,FG AB == ∴2tan 5EF EGF FG ∠==. 故二面角D BC E --的平面角的正切值为25. 解法2:∵CD ⊥平面ADE ,DE ⊂平面ADE , ∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-, 在Rt △ADE 中,22229DE AD AE a =-=-, 由22819a a -=-,解得,a =∴6DE ==.以D 为坐标原点,分别以ED 、CD 所在的直线为x 轴、y 轴建立如图所示的空间直角坐标系,则GFz()0,0,0D ,()6,0,0E -,()0,C -,()6,0,3A -,()6,B --.设平面ABCD 的法向量为()1111,,x y z =n ,则110,0.DA DC ⎧=⎪⎨=⎪⎩n n即111630,0.x z -+=⎧⎪⎨-=⎪⎩ 取11x =,则()11,0,2=n 是平面ABCD 的一个法向量. 设平面BCE 的法向量为()2222,,x y z =n ,则220,0.EB EC ⎧=⎪⎨=⎪⎩n n即222230,60.z x ⎧-+=⎪⎨-=⎪⎩ 取22y =,则22,=n 是平面ABCD 的一个法向量.∵()(1212121,0,25,2,2cos ,===⋅n n n n n n , ∴12sin ,=n n . ∴122tan ,5=n n . 故二面角D BC E --的平面角的正切值为25. 17.(2010年3月广东省广州市高三一模数学文科试题)(本小题满分14分)如图6,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且3AE =,6AB =. (1)求证:AB ⊥平面ADE ;(2)求凸多面体ABCDE 的体积.17.(本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵AE ⊥平面CDE ,CD ⊂平面CDE ,∴AE ⊥CD .在正方形ABCD 中,CD AD ⊥,∵AD AE A =,∴CD ⊥平面ADE .∵ABCD ,∴AB ⊥平面ADE .AB C D E图5故所求凸多面体ABCDE的体积为解法2:在Rt △ADE 中,3AE =,6AD =,∴DE ==连接BD ,则凸多面体ABCDE 分割为三棱锥B CDE - 和三棱锥B ADE -. 由(1)知,CD ⊥DE .∴11622CDE S CD DE ∆=⨯⨯=⨯⨯= 又AB CD ,AB ⊄平面CDE ,CD ⊂平面CDE ,∴AB平面CDE .∴点B 到平面CDE 的距离为AE 的长度.∴11333B CDE CDE V S AE -∆=⋅=⨯= ∵AB ⊥平面ADE ,∴11633B ADE ADE V S AB -∆=⋅==. ∴ABCDE B CDE B ADE V V V --=+= 故所求凸多面体ABCDE的体积为ABCDE18. (广东省惠州市2010届高三第三次调研理科)(本小题满分14分) 如图所示,在正方体1111ABCD A B C D -中,E 为AB 的中点(1)若F 为1AA 的中点,求证: EF ∥面11DD C C ; (2) 若F 为1AA 的中点,求二面角1A EC D --的余弦值; (3)若F 在1AA 上运动时(F 与A 、1A 不重合), 求当半平面1D EF 与半平面ADE 成4π的角时,线段1A F FA 与的比.为等腰梯形, ………………………5分又11922EFD C S ==梯形,12332ADCE S =⨯⨯=梯形 ………………………7分∴ 132cos 932ADCE EFD C S S θ===梯形梯形 ∴ 二面角1A EC D --的余弦值为23。
10年高考全国卷一解几汇编9.〖2010全国大纲Ⅰ卷〗已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,1260F PF ∠=o ,则P 到x 轴的距离为( )A .2 B .2C D . 11.〖2010全国大纲Ⅰ卷〗已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ⋅u u u r u u u r的最小值为( )A .4-B .3-+C .4-+D .3-+16.〖2010全国大纲Ⅰ卷〗已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =u u u r u u u r,则C 的离心率为.21.〖2010全国大纲Ⅰ卷〗(本小题满分12分)已知抛物线C :24y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上;(2)设89FA FB ⋅=u u u r u u u r ,求△BDK 的内切圆M 的方程.4.〖2013新课标卷Ⅰ〗设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为o30的等腰三角形,则E 的离心率为( ) A .21 B .32 C .43 D .548.〖2013新课标卷Ⅰ〗等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为( ) A .2 B .22C .4D .820.〖2013新课标卷Ⅰ〗(本小题满分12分)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA为半径的圆F 交l 于B 、D 点. (Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.4.〖2013新课标卷Ⅰ〗已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( ) A .y =±14x B .y =±13x C .y =±12xD .y =±x10.〖2013新课标卷Ⅰ〗已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A .x 245+y 236=1 B .x 236+y 227=1 C .x 227+y 218=1D .x 218+y 29=120.〖2013新课标卷Ⅰ〗(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.4.〖2014新课标卷Ⅰ〗已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3 CD .3m10.〖2014新课标卷Ⅰ〗已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =u u u r u u u r,则||QF =( )A .72B .52C .3D .220.〖2014新课标卷Ⅰ〗(本小题满分12分)已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.〖2015新课标1理〗已知00(,)M x y 是双曲线:C 2212x y -=上的一点,1F 、2F 是C 上的两个焦点.若120MF MF ⋅<u u u u r u u u u r,则0y 的取值范围是( )A .(,)33-B .(C .(D .(,33-14.〖2015新课标1理〗一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为____.20.〖2015新课标1理〗在直角坐标系xOy 中,曲线:C 24x y =与直线:l (0)y kx a a =+>交与M ,N 两点. (1)当0k=时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.5.〖2016全国卷Ⅰ理〗已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(–1,3) B .(–1,3) C .(0,3) D .(0,3)10.〖2016全国卷Ⅰ理〗以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知|AB |=|DE|=C 的焦点到准线的距离为( )A .2B .4C .6D .820.〖2016全国卷Ⅰ理〗(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.10.〖2017新课标1理〗已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为( )A .16B .14C .12D .1015.〖2017新课标1理〗已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于,M N 两点.若60MAN ∠=o ,则C 的离心率为____.8.〖2018全国Ⅰ〗设抛物线C :24y x =的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅u u u u r u u u r=( )A .5B .6C .7D .811.〖2018全国Ⅰ〗已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN ∆为直角三角形,则||MN =( )A .32B .3C .D .419.〖2018全国Ⅰ〗(12分)设椭圆:C 2212x y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.10.〖2019全国Ⅰ理〗已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 16.〖2019全国Ⅰ理〗已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F B F B =u u u r u u u u rg ,则C 的离心率为____.19.〖2019全国Ⅰ理〗(12分)已知抛物线2:3C y x =的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若||||4AF BF +=,求l 的方程;(2)若3AP PB =u u u r u u u r,求||AB .。
绝密★启用前2010年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={1,2,4},则集合A B=A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 2.函数()lg(1)f x x =-的定义域是A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)3.若函数()33x x f x -=+与()33x xg x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数,()g x 为奇函数 4.已知数列{n a }为等比数列,n S 是它的前n 项和,若2·a a a 31=2,且4a 与72a 的等差中项为54,则S5=A .35B .33C .31D .295.若向量a =(1,1),b =(2,5),c =(3,x)满足条件 (8a -b )·c=30,则x =A .6B .5C .4D .36.若圆心在x 轴上、O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A.22(5x y += B.22(5x y += C .22(5)5x y -+= D .22(5)5x y ++= 7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A . 45B .35C .25D .158.“x >0”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1,ABC∆为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,3x ,4x ,分别为1,1.5,1.5,2,则输出的结果s 为 _________.12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是_________,家庭年平均收入与年平均支出有_________线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a=1,A+C=2B ,则sinA= _________.(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=2a,点E,F分别为线段AB,AD的中点,则EF= .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin1ρθθ+=与()sin cos1ρθθ-=的交点的极坐标为_________.三、解答题:本大题共6小题,满分80分。
考点21 直线与圆1.(2010·安徽高考文科·T4)过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) (A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 【命题立意】本题主要考查直线平行问题.【思路点拨】可设所求直线方程为20x y c -+=,代入点(1,0)得c 值,进而得直线方程.【规范解答】选A ,设直线方程为20x y c -+=,又经过(1,0),故1c =-,所求方程为210x y --=. 2.(2010·广东高考文科·T6)若圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的方程是( )(A)22(5)5x y -+= (B)22(5)5x y ++=(C)22(5)5x y -+= (D)22(5)5x y ++=【命题立意】本题考察直线与圆的位置关系.【思路点拨】由切线的性质:圆心到切线的距离等于半径求解. 【规范解答】选D .设圆心为(,0)(0)a a <,则2220512a r +⨯==+,解得5a =-,所以所求圆的方程为:22(5)5x y ++=,故选D .3.(2010 ·海南宁夏高考·理科T15)过点A(4,1)的圆C 与直线10x y --=相切于点B(2,1). 则圆C 的方程为 .【命题立意】本题主要考察了圆的相关知识,如何灵活转化题目中的条件求解圆的方程是解决问题的关键. 【思路点拨】由题意得出圆心既在线段AB 的中垂线上,又在过点B(2,1)且与直线10x y --=垂直的直线上,进而可求出圆心和半径,从而得解.【规范解答】由题意知,圆心既在过点B(2,1)且与直线10x y --=垂直的直线上,又在线段AB 的中垂线上.可求出过点B(2,1)且与直线10x y --=垂直的直线为30x y +-=,AB 的中垂线为3x =,联立半径2r CA ==22(3)2x y -+=.【答案】22(3)2x y -+=4.(2010·广东高考理科·T12)已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是【命题立意】本题考察直线与圆的位置关系.【思路点拨】由切线的性质:圆心到切线的距离等于半径求解. 【规范解答】设圆心坐标为(,0)a ,则022a +=,解得2a =±,又圆心位于y 轴左侧,所以2a =-.故圆O 的方程为22(2)2x y ++=. 【答案】22(2)2x y ++=5.(2010·天津高考文科·T14)已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切.则圆C 的方程为【命题立意】考查点到直线的距离、圆的标准方程、直线与圆的位置关系. 【思路点拨】圆心到与圆的切线的距离即为圆的半径.【规范解答】由题意可得圆心的坐标为(-1,0),圆心到直线x+y+3=0的距离即为圆的半径,故22r ==,所以圆的方程为2x+1y 2+=2(). 【答案】2x+1y 2+=2() 6.(2010·江苏高考·T9)在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是___________ 【命题立意】本题考查直线与圆的位置关系.【思路点拨】由题意分析,可把问题转化为坐标原点到直线12x-5y+c=0的距离小于1,从而求出c 的取值范围.【规范解答】如图,圆422=+y x 的半径为2, 圆上有且仅有四个点到直线12x-5y+c=0的距离为1, 问题转化为坐标原点(0,0)到直线12x-5y+c=0的 距离小于1.1,13,1313.c c <<∴-<<【答案】1313c -<<7.(2010·山东高考理科·T16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :1y x =-被圆C所截得的弦长为,则过圆心且与直线l 垂直的直线的方程为 .【命题立意】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了考生的分析问题解决问题的能力、推理论证能力和运算求解能力.【规范解答】由题意,设所求的直线方程为x+y+m=0,设圆心坐标为(a,0),则由题意知:22+2=(a-1),解得a=3或-1,又因为圆心在x 轴的正半轴上,所以a=3,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有3+0+m=0,即m=-3,故所求的直线方程为x+y-3=0. 【答案】x+y-3=0【方法技巧】(1)研究直线与圆的位置关系,尽可能简化运算,要联系圆的几何特性.如“垂直于弦的直径必平分弦”,“圆的切线垂直于过切点的半径”,“两圆相交时连心线必垂直平分其公共弦”等.在解题时应注意灵活运用.(2)直线与圆相交是解析几何中一类重要问题,解题时注意运用“设而不求”的技巧.8.(2010·山东高考文科·T16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :1y x =-被该圆所截得的弦长为C 的标准方程为 .【命题立意】本题考查了点到直线的距离、直线与圆的关系,圆的标准方程等知识,考查了考生的分析问题解决问题的能力、推理论证能力和运算求解能力.【思路点拨】根据弦长及圆心在x 轴的正半轴上求出圆心坐标,再求出圆的半径即可得解. 【规范解答】设圆心坐标为(a,0),圆的半径为r,则由题意知:22+2=(a-1),解得a=3或-1,又因为圆心在x 轴的正半轴上,所以a=3,故圆心坐标为(3,0),222(1)(31)4,r a =-=-=故所求圆的方程为22(3) 4.x y -+=. 【答案】22(3)4x y -+=【方法技巧】(1)研究直线与圆的位置关系,尽可能简化运算,要联系圆的几何特性.如“垂直于弦的直径必平分弦”,“圆的切线垂直于过切点的半径”,“两圆相交时连心线必垂直平分其公共弦”等.在解题时应注意灵活运用.(2)直线与圆相交是解析几何中一类重要问题,解题时注意运用“设而不求”的技巧.9.(2010·湖南高考文科·T14)若不同两点P,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线l 的斜率为 ,圆(x-2)2+(y-3)2=1关于直线对称的圆的方程为 . 【思路点拨】第一问直接利用“如果两直线的斜率存在,那么相互垂直的充要条件是斜率之积等于-1”;第二问把圆的对称转化为圆心关于直线的对称.【规范解答】设PQ 的垂直平分线的斜率为k ,则k ·ab ba ----33=-1,∴k=-1,而且PQ 的中点坐标是(23b a -+ ,23b a +-),∴l 的方程为:y-23b a +-=-1·(x-23b a -+ ),∴y=-x+3,而圆心(2,3)关于直线y=-x+3对称的点坐标为(0,1),∴所求圆的方程为:x 2+(y-1)2=1. 【答案】-1 x 2+(y-1)2=1【方法技巧】一个图形关于一条直线的对称图形的方程的求法,如果对称轴的斜率为±1,常常把横坐标代入得到纵坐标,把纵坐标代入得到横坐标,如(a,b)关于y=x+c 的对称点是(b-c,a+c).10.(2010·北京高考理科·T19)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (1)求动点P 的轨迹方程.(2)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.【命题立意】本题考查了动点轨迹的求法,第(2)问是探究性问题,考查了考生综合运用知识解决问题的能力,考查了数学中的转化与化归思想.【思路点拨】(1)设出点P 的坐标,利用AP 与BP 的斜率之积为13-,可得到点P 的轨迹方程.(2)方法一:设出00(,)P x y ,把PAB ∆和PMN ∆的面积表示出来,整理求解;方法二:把△PAB 与△PMN 的面积相等转化为||||||||PA PN PM PB =,进而转化为0000|1||3||3||1|x x x x +-=--. 【规范解答】(1)因为点B 与点A (1,1)-关于原点O 对称,所以点B 的坐标为(1,1)-.设点P 的坐标为(,)x y , 由题意得111113y y x x -+=-+-,化简得 2234(1)x y x +=≠±.故动点P 的轨迹方程为2234(1)x y x +=≠±.(2)方法一:设点P 的坐标为00(,)x y ,点M ,N 得坐标分别为(3,)M y ,(3,)N y . 则直线AP 的方程为0011(1)1y y x x --=++,直线BP 的方程为0011(1)1y y x x ++=--, 令3x =得000431M y x y x +-=+,000231N y x y x -+=-,于是PMN ∆的面积为2000020||(3)1||(3)2|1|PMNM N x y x S y y x x ∆+-=--=-, 又直线AB 的方程为0x y +=,||AB = 点P 到直线AB的距离d =, 于是PAB ∆的面积为001||||2PAB S AB d x y ∆==+, 当PABPMN S S ∆∆=时,有20000020||(3)|||1|x y x x y x +-+=-, 又00||0x y +≠,所以20(3)x -=20|1|x -,解得053x =. 因为220034x y +=,所以0y =, 故存在点P 使得PAB ∆与PMN ∆的面积相等,此时点P的坐标为55(,,-3939或(方法二:若存在点P 使得PAB ∆与PMN ∆的面积相等,设点P 的坐标为00(,)x y 则11||||sin ||||sin 22PA PB APB PM PN MPN ∠=∠, 因为sin sin APB MPN ∠=∠, 所以||||||||PA PN PM PB =,所以0000|1||3||3||1|x x x x +-=--, 即 2200(3)|1|x x -=-,解得0x 53=, 因为220034x y +=,所以0y =, 故存在点P 使得△PAB 与△PMN 的面积相等,此时点P的坐标为55(,,-3939或(.。
2010年高考广东理科数学试题及答案一、选择题(共8小题;共40分)1. 若集合A=x−2<x<1,B=x0<x<2,则集合A∩B= A. x−1<x<1B. x−2<x<1C. x−2<x<2D. x0<x<12. 若复数z1=1+i,z2=3−i,则z1⋅z2= A. 4+2iB. 2+iC. 2+2iD. 33. 若函数f x=3x+3−x与g x=3x−3−x的定义域均为R,则 A. f x与g x均为偶函数B. f x为偶函数,g x为奇函数C. f x与g x均为奇函数D. f x为奇函数,g x为偶函数4. 已知数列a n为等比数列,S n是它的前n项和,若a2⋅a3=2a1,且a4与2a7的等差中项为5,则4 S5= A. 35B. 33C. 31D. 29"是"一元二次方程x2+x+m=0有实数解"的 5. " m<14A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件BBʹ=CCʹ=AB,则多6. 如图,△ABC为正三角形,AAʹ∥BBʹ∥CCʹ,CCʹ⊥平面ABC,且3AAʹ=32面体ABC−AʹBʹCʹ的正视图(也称主视图)是 A. B.C. D.7. 已知随机变量X服从正态分布N3,1,且P2≤X≤4=0.6826,则P X>4= A. 0.1588B. 0.1587C. 0.1586D. 0.15858. 为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是 A. 1205秒B. 1200秒C. 1195秒D. 1190秒二、填空题(共7小题;共35分)9. 函数f x=lg x−2的定义域是.10. 若向量a=1,1,x,b=1,2,1,c=1,1,1,满足条件c−a⋅2b=−2,则x=.11. 已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sin A=.12. 若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是.13. 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,⋯,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为.,∠OAP=30∘,则14. 如图,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3CP=.15. 在极坐标系ρ,θ0≤θ<2π中,曲线ρ=2sinθ与ρcosθ=−1的交点的极坐标为.三、解答题(共6小题;共78分)16. 已知函数f x=A sin3x+φA>0,x∈−∞,+∞,0<φ<π在x=π12时取得最大值4.(1)求f x的最小正周期;(2)求f x的解析式;(3)若f23α+π12=125,求sinα.17. 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为490,495,495,500,⋯,510,515,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.18. 如图,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=5a,EF=6a.(1)证明:EB⊥FD;(2)已知点Q,R分别为线段FE,FB上的点,使得FQ=23FE,FR=23FB,求平面BED与平面RQD所成二面角的正弦值.19. 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?−y2=1的左、右顶点分别为A1,A2,点P x1,y1,Q x1,−y1是双曲线上不同的20. 已知双曲线x22两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H0, >1的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求 的值.21. 设A x1,y1,B x2,y2是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρA,B为ρA,B=x2−x1+y2−y1.对于平面xOy上给定的不同的两点A x1,y1,B x2,y2,(1)若点C x,y是平面xOy上的点,试证明ρA,C+ρC,B≥ρA,B;(2)在平面xOy上是否存在点C x,y,同时满足①ρA,C+ρC,B=ρA,B;②ρA,C=ρC,B.若存在,请求出所有符合条件的点;若不存在,请予以证明.答案第一部分1. D2. A3. B 【解析】验证f−x=3−x+3−−x=f x,g−x=3−x−3−−x=−g x.4. C 【解析】a2⋅a3=a1q⋅a1q2=2a1,a1q3=2,即a4=2.又a4与2a7的等差中项为54,即a4+2a7=52,得a7=14.所以q=12,a1=16.所以S5=161−1251−12=31.5. A【解析】方程x2+x+m=0有实数解的充要条件为Δ=1−4m≥0,解得m≤1 4 .6. D7. B 【解析】由题设条件知μ=3,则P X>4=1−P2≤X≤4=1−0.6826=0.1587.8. C 【解析】由题意知共有5!=120个不同的闪烁,每次闪烁时间5秒,共5×120=600秒,每两次闪烁之间的间隔为5秒,共5×120−1=595秒.总共就有600+595=1195秒.第二部分9. 2,+∞10. 2【解析】由已知c=1,1,1,a=1,1,x,得c−a=0,0,1−x,所以c−a⋅2b=0,0,1−x⋅2,4,2=21−x=−2,即x=2.11. 12【解析】因为A+C=2B,所以B=60∘,又由正弦定理得:asin A =bsin B,所以sin A=a sin Bb=323=12.12. x+22+y2=213. 14【解析】当i=1时,S1=1,S2=1;当i=2时,S1=1+2=3;S2=1+22=5,此时S=12×5−12×9=14.i的值变成3,从循环体中跳出,输出S的值为14.14. 98a【解析】在△OPA中,P为AB的中点,∠OAP=30∘,所以AP=32a,又由相交弦定理得PC⋅PD=PA2,得PC⋅23a=32a2,即PC=98a.15. 2,34π【解析】两条曲线ρ=2sinθ与ρcosθ=−1的普通方程分别为x2+y2=2y与x=−1,交点坐标为−1,1,对应的极坐标为2,34π .第三部分16. (1)因为f x=A sin3x+φ,所以T=2π3.(2)因为最大值为4,所以A=4.由题意得4sin3×π12+φ =4,则有sin3×π+φ =1,即π+φ=π+2kπ,k∈Z解得φ=π+2kπ,k∈Z因为0<φ<π故φ=π4.所以f x的解析式为f x=4sin3x+π.(3)由题意得4sin32α+π+π=12,即sin2α+π=3,从而cos2α=1−2sin2α=3 ,解得sinα=±5 5 .17. (1)重量超过505克的产品数量是40×0.05×5+0.01×5=12 件.(2)依题意Y 的所有可能取值为0,1,2.P Y =0 =C 282402=63,P Y =1 =C 121C 281C 402=2865,P Y =2 =C 122C 402=11130,所以Y 的分布列为Y 012P632811(3)该流水线上产品重量超过505克的概率为0.3.令ξ为任取的5件产品中重量超过505克的产品数量,则ξ~B 5,0.3 , 故所求的概率为P ξ=2 =C 52 0.3 2 1−0.3 3=0.3087.18. (1)∵E 为AC 的中点,AB =BC ,AC 为直径, ∴EB ⊥AD .∵EF 2=6a 2= 5a 2+a 2=BF 2+BE 2, ∴EB ⊥FB . 又∵BF ∩BD =B , ∴EB ⊥平面BDF . ∵FD ⊂平面BDF , ∴EB ⊥FD .(2)方法一:如图,过D 作HD ∥QR .由FQ =23FE ,FR =23FB ,知QR ∥EB ,∴HD ∥EB .又∵D ∈平面 BED ∩平面 RQD , ∴HD 为平面BED 与平面RQD 的交线. ∵DR ,DB ⊂平面 BDF ,BE ⊥平面 BDF , ∴HD ⊥平面 BDF ,从而HD ⊥BD ,HD ⊥RD ,则∠RDB是平面BED与平面RQD所成二面角的平面角.由FB=FD,BC=CD,得FC⊥BD,则cos∠FBC=BCBF=a5a=55,从而sin∠FBC=25,由余弦定理得RD=BD2+BR2−2BD⋅BR cos∠RBD=2a2+5a3−2⋅2a⋅5a3⋅15=29 3a.由正弦定理得sin∠RDB=RBRD⋅sin∠FBC=5a3293⋅5=229.故平面BED与平面RQD所成二面角正弦值为22929.方法二:如图,以B为原点,BE为x轴正方向,BD为y轴正方向,过B作平面BEC的垂线,建立空间直角坐标系,由此得B0,0,0,C0,a,0,D0,2a,0,E a,0,0,由FD=FB,BC=CD,得FC⊥BD,则FC=2a.由FQ=23FE,FR=23FB,得R0,13a,23a ,从而RQ=23BE=23a,0,0,RD=0,5 3 a,−23a .设平面RQD的法向量为n1=x,y,z,则n1⋅RD=0,n1⋅RQ=0,即ax=0,5ay−2az=0,所以n1=0,2,5.而平面BED的法向量为n2=0,0,1,所以cos n1,n2=529,从而sin n1,n2=229.故平面BED与平面RQD所成二面角正弦值为22929.19. 设为该儿童分别预订x、y个单位的午餐和晚餐,共花费z元,则z=2.5x+4y,且满足以下条件12x+8y≥64,6x+6y≥42,6x+10y≥54,x,y≥0,化简得3x+2y≥16,x+y≥7,3x+5y≥27,x,y≥0,作出可行域如图,则z在可行域的四个顶点A9,0,B4,3,C2,5,D0,8处的值分别为z A=2.5×9+4×0=22.5,z B=2.5×4+4×3=22,z C=2.5×2+4×5=25,z D=2.5×0+4×8=32.比较之,z B最小,因此应当为该儿童预定4个单位的午餐和3个单位的晚餐,就可以满足要求.20. (1)由A1,A2为双曲线的左右顶点知A1 −2,0,A22,0,故有直线A1P的方程为y=1x1+2+2, ⋯⋯①直线A2Q的方程为y=1x1−2−2, ⋯⋯②两式相乘得y 2=−y 1212x 2−2 , 因为点P x 1,y 1 在双曲线上,所以x 122−y 12=1,即y 12x 12−2=12,故y 2=−12 x 2−2 ,整理得x 22+y 2=1, 因为点P ,Q 是双曲线上的不同两点,所以它们与点A 1,A 2均不重合, 故点A 1,A 2均不在轨迹上.过点 0,1 及A 2的直线l 的方程为x + 2y − 2=0, 解方程组x + 2y − 2=0,x 22−y 2=1,得x = y =0,所以直线l 与双曲线只有一个交点A 2. 故轨迹不经过 0,1 ,同理轨迹也不经过点 0,−1 . 综上分析,轨迹E 的方程为x 22+y 2=1,x ≠0 且 x ≠± 2.(2)设l 1:y =kx + k >0 ,则由l 1⊥l 2知,l 2:y =−1k x + . 将l 1:y =kx + 代入x 22+y 2=1,得x 22+ kx + 2=1,即 1+2k 2 x 2+4k x +2 2−2=0,若l 1与椭圆相切,则Δ=16k 2 2−4 1+2k 2 2 2−2 =0,即1+2k 2= 2. 同理,若l 2与椭圆相切,则1+2⋅1k = 2,由l 1与l 2与轨迹E 都只有一个交点包含以下四种情况: ①直线l 1与l 2都与椭圆相切,即1+2k 2= 2,且1+2⋅1k 2= 2,消去 2得1k 2=k 2,即k 2=1,从而2=1+2k 2=3,即 = 3;②直线l 1过点A 1 − 2,0 ,而l 2与椭圆相切,此时k ⋅ − 2 + =0,1+2⋅1k 2= 2,解得 = 1+ 172; ③直线l 2过点A 2 2,0 ,而l 1与椭圆相切,此时−1k ⋅ 2+ =0,1+2k 2= 2,解得 =1+ 172; ④直线l 1过点A 1 − 2,0 ,而直线l 2过点A 2 2,0 ,此时k ⋅ − 2 + =0,−1k⋅ 2 + =0,所以 = 2,综上所述, 的值为 3, , 1+ 172. 21. (1)由绝对值不等式知普通高等学校招生全国统一考试高考数学教师精校版含详解完美版ρA,C+ρC,B=x−x1+x2−x+y−y1+y2−y≥ x−x1+x2−x+y−y1+y2−y=x2−x1+y2−y1=ρA,B,当且仅当x−x1⋅x2−x≥0且y−y1⋅y2−y≥0时等号成立.(2)由ρA,C+ρC,B=ρA,B,得x−x1⋅x2−x≥0,且y−y1⋅y2−y≥0, ⋯⋯①由ρA,C=ρC,B,得x−x1+y−y1=x2−x+y2−y, ⋯⋯②因为A x1,y1,B x2,y2是不同的两点,则:1)若x1=x2且y1≠y2,不妨设y1<y2,由①得x=x1=x2且y1≤y≤y2,由②得y=y1+y22,此时,点C是线段AB的中点,即只有点C x1+x22,y1+y22满足条件;2)若x1≠x2且y1=y2,同理可得:只有AB的中点C x1+x22,y1+y22满足条件;3)若x1≠x2且y1≠y2,不妨设x1<x2. a.若y1<y2时,由①得x1≤x≤x2且y1≤y≤y2,由②得x+y=x1+x22+y1+y22,此时,所求点C的全体为M=x,y x+y=12x1+x2+y1+y2,x1≤x≤x2且y1≤y≤y2.b.若y1>y2时,类似地由条件①可得x1≤x≤x2且y2≤y≤y1,从而由条件②得x−y= 12x1+x2−y1−y2.此时,所求点C的全体为N=x,y x−y=12x1+x2−y1−y2,x1≤x≤x2且y2≤y≤y1.。
2010年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•广东)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=() A.{x|﹣1<x<1} B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1} 【考点】并集及其运算.【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010•广东)若复数z1=1+i,z2=3﹣i,则z1•z2=()A.4+2i B.2+i C.2+2i D.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1•z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式.【解答】解:z1•z2=(1+i)•(3﹣i)=1×3+1×1+(3﹣1)i=4+2i;故选A.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010•广东)若函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x的定义域均为R,则()A.f(x)与g(x)均为偶函数 B.f(x)为奇函数,g(x)为偶函数C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x 代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).对函数f(x)=3x+3﹣x有f(﹣x)=3﹣x+3x满足公式f(﹣x)=f(x)所以为偶函数.对函数g(x)=3x﹣3﹣x有g(﹣x)=3﹣x﹣3x=﹣g(x).满足公式g(﹣x)=﹣g(x)所以为奇函数.所以答案应选择D.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010•广东)已知数列{a n}为等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,则S5=()A.35 B.33 C.31 D.29【考点】等比数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2•a3=2a1求得a4,再根据a4+2a7=a4+2a4q3,求得q,进而求得a1,代入S5即可.【解答】解:a2•a3=a1q•a1q2=2a1∴a4=2a4+2a7=a4+2a4q3=2×∴q=,a1==16故S5==31故选C.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010•广东)“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解"必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010•广东)如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图(也称主视图)是()A. B. C. D.【考点】简单空间图形的三视图.【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC,且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图中,CC′必为虚线,排除B,C,3AA′=BB′说明右侧高于左侧,排除A.故选D【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.7.(5分)(2010•广东)sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【考点】两角和与差的余弦函数.【专题】三角函数的求值.【分析】由题意知本题是一个三角恒等变换,解题时注意观察式子的结构特点,根据同角的三角函数的关系,把7°的正弦变为83°的余弦,把53°的余弦变为37°的正弦,根据两角和的余弦公式逆用,得到特殊角的三角函数,得到结果.【解答】解:sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选:A.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒【考点】分步乘法计数原理;排列及排列数公式.【专题】排列组合.【分析】彩灯闪烁实际上有5个元素的一个全排列,每个闪烁时间为5秒共5×120秒,每两个闪烁之间的间隔为5秒,共5×(120﹣1),解出共用的事件.【解答】解:由题意知共有5!=120个不同的闪烁,每个闪烁时间为5秒,共5×120=600秒;每两个闪烁之间的间隔为5秒,共5×(120﹣1)=595秒.那么需要的时间至少是600+595=1195秒.故选C【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分)9.(5分)(2011•上海)函数f(x)=lg(x﹣2)的定义域是(2,+∞).【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010•广东)若向量,,,满足条件,则x=2.【考点】空间向量运算的坐标表示.【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,建立方程,求出x【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010•广东)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=1.【考点】正弦定理.【专题】解三角形.【分析】先根据A+C=2B及A+B+C=180°求出B的值,再由正弦定理求得sinA的值,再由边的关系可确定A的值,从而可得到C的值确定最后答案.【解答】解:由A+C=2B及A+B+C=180°知,B=60°,由正弦定理知,,即;由a<b知,A<B=60°,则A=30°,C=180°﹣A﹣B=90°,于是sinC=sin90°=1.故答案为:1.【点评】本题主要考查正弦定理的应用和正弦函数值的求法.高考对三角函数的考查以基础题为主,要强化记忆三角函数所涉及到的公式和性质,做到熟练应用.12.(5分)(2010•广东)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是(x+2)2+y2=2.【考点】关于点、直线对称的圆的方程.【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则,解得a=﹣2.圆的方程是(x+2)2+y2=2.故答案为:(x+2)2+y2=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆O位于y轴左侧,容易疏忽出错.13.(5分)(2010•广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1。
2010广东高考数学答案【篇一:2010年广东省高考数学试卷(理科)答案与解析】ss=txt>参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分) 1.(5分)(2010?广东)若集合a={x|﹣2<x<1},b={x|0<x<2},则集合a∩b=() a.{x|﹣1<x<1} b.{x|﹣2<x<1} c.{x|﹣2<x<2} d.{x|0<x<1} 【考点】并集及其运算.【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:a∩b={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选d.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010?广东)若复数z1=1+i,z2=3﹣i,则z1?z2=() a.4+2i b.2+i c.2+2i d.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1?z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈r)的形式.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010?广东)若函数f(x)=3+3与g(x)=3﹣3的定义域均为r,则() a.f(x)与g(x)均为偶函数 b.f(x)为奇函数,g(x)为偶函数 c.f(x)与g(x)均为奇函数 d.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足x﹣xx﹣x公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f (x)=3+3与g(x)=3﹣x﹣3代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).x﹣x﹣xx﹣xx对函数f(x)=3+3有f(﹣x)=3+3满足公式f(﹣x)=f(x)所以为偶函数.﹣x﹣xxx对函数g(x)=3﹣3有g(﹣x)=3﹣3=﹣g(x).满足公式g (﹣x)=﹣g(x)所以为奇函数.所以答案应选择d.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f (﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010?广东)已知数列{an}为等比数列,sn是它的前n项和,若a2?a3=2a1,且a4与2a7的等差中项为,则s5=() a.35 b.33 c.31 d.29【考点】等比数列的性质;等比数列的前n项和.x【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2?a3=2a1求得a4,再根据a4+2a7=a4+2a4q,求得q,进而求得a1,代入s5即可.2【解答】解:a2?a3=a1q?a1q=2a1 ∴a4=233∴q=,a1==16故s5==31故选c.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010?广东)“”是“一元二次方程x+x+m=0有实数解”的()2a.充分非必要条件 b.充分必要条件c.必要非充分条件 d.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x+x+m=0知,(或由△≥0得1﹣4m≥0,∴22?.),,未必有.反之“一元二次方程x+x+m=0有实数解”必有因此“2,”是“一元二次方程x+x+m=0有实数解”的充分非必要条件.故选a.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010?广东)如图,△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc 且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图(也称主视图)是()a. b. c. d.【考点】简单空间图形的三视图.【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc,且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图中,cc′必为虚线,排除b,c,3aa′=bb′说明右侧高于左侧,排除a.故选dc.d.﹣【考点】两角和与差的余弦函数.【专题】三角函数的求值.故选:a.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()a.1205秒 b.1200秒 c.1195秒 d.1190秒【考点】分步乘法计数原理;排列及排列数公式.【专题】排列组合.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分) 9.(5分)(2011?上海)函数f(x)=lg(x﹣2)的定义域是【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010?广东)若向量满足条件,,则x= 2 .,,【考点】空间向量运算的坐标表示.【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,方程,求出x 【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010?广东)已知a,b,c分别是△abc的三个内角a,b,c所对的边,若a=1,b=,a+c=2b,则sinc=.【考点】正弦定理.建立【专题】解三角形.;,22相切,则圆o的方程是(x+2).【考点】关于点、直线对称的圆的方程.【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则22,解得a=﹣2.圆的方程是(x+2)+y=2.22故答案为:(x+2)+y=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆o位于y轴左侧,容易疏忽出错.13.(5分)(2010?广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为.【篇二:2010年广东高考理科数学试题及答案word版】010年普通高等学校招生全国统一考试(广东a卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。
2010年高考题一、选择题2.(2010重庆理)(3)2241lim 42x x x →⎛⎫- ⎪--⎝⎭= A. —1 B. —14 C. 14D. 1 【答案】 B 解析:2241lim 42x x x →⎛⎫-⎪--⎝⎭=4121)2)(4(2(lim lim 222-=+-=+--→→x x x x x x 3.(2010北京理)(5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 【答案】C4.(2010湖南理)5、421dx x⎰等于 A 、2ln 2- B 、2ln 2 C 、ln 2- D 、ln 25.(2010湖南理)3、极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线6.(2010安徽理)7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 的点的个数为 A 、1 B 、2C 、3D 、4【答案】B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离3d ==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又31010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为,然后再判断知3>. 二、填空题3.(2010北京理)(12)如图,O 的弦ED ,CB 的延长线交于点A 。
若BD ⊥AE ,AB =4, BC =2, AD =3,则DE = ;CE = 。
2010-2019“十年高考”数学真题分类汇总解析几何——直线与圆(附详细答案解析)1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β。
图中阴影区域的面积的最大值为(A )4β+4cos β(B )4β+4sin β(C )2β+2cos β(D )2β+2sin β【答案】(B).【解析】由题意和题图可知,当P 为优弧 AB 的中点时,阴影部分的面积取最大值,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-.此时阴影部分面积BOP AOP AOB S S S S ∆∆++=扇形()⎥⎦⎤⎢⎣⎡-⨯⨯⨯⨯+⨯⨯=βπβsin 2221222212ββsin 44+=.故选B.2.(2019北京文11)设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】()2214x y -+=.【解析】24y x =的焦点为()1,0,准线为1x =-,故符合条件的圆为()2214x y -+=.3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当︒<∠90OBP 时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当︒≥∠90OBP 时,对线段PB 上任意一点F ,OB OF ≥,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ==此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-,∴直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+- .在线段AD 上取点M (3,154),因为5OM =,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9);当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+4.(2019浙江12)已知圆C 的圆心坐标是(0,)m ,半径长是r 。
广东省各地市2010年高考数学最新联考试题(3月-6月)分类汇编
第8部分:直线与圆
一、选择题:
8.(2010年广东省揭阳市高考一模试题理科)平面内称横坐标为整数的点为“次整点”.过函数y =图象上任意两个次整点作直线,则倾斜角大于45°的直线条数为.
A .10
B .11
C .12
D .13 【答案】B
【解析】如图,设曲线y =127,,P P P ,过点
1P 倾斜角大于45°的直线有1213,PP PP ,过点2P 的有27P P ,
过点3P 有36P P 、37P P ,过点4P 有45P P 、46P P 、47P P ,过
点5P 有5657,P P P P ,过点6P 的有67P P ,共11条,故选B.
6.(2010年3月广东省深圳市高三年级第一次调研考试理科)若曲线C :04542222=-+-++a ay ax y x 上所有的点均在第二象限内,则a 的取值范围为( D )
A .)2,(--∞
B .)1,(--∞
C .),1(∞+
D .),2(∞+
二、填空题:
10.(广东省深圳高级中学2010届高三一模理科)若直线:10 (0,0)l ax by a b ++=>>始终平分圆M :
228210x y x y ++++=的周长,则14a b
+的最小值为 。
16 三、解答题
19. (广东省惠州市2010届高三第三次调研理科)(本小题满分14分) 已知点P 是⊙O :229x y +=上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足23
DQ DP = 。
(1)求动点Q 的轨迹方程;
(2)已知点(1,1)E ,在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使1()2
OE OM ON =+ (O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由。
19、解:(1)设()00(,),,P x y Q x y ,依题意,则点D 的坐标为0(,0)D x ……………1分
∴00(,),(0,)DQ x x y DP y =-= ………………………2分
新财界财经/ 峭孞尛。