深基坑监测技术设计方案
- 格式:doc
- 大小:76.50 KB
- 文档页数:9
目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
深基坑施工监测方案一、工程概述本工程为_____项目,位于_____,占地面积约_____平方米,基坑开挖深度为_____米。
周边环境复杂,临近建筑物、道路及地下管线等。
二、监测目的1、及时掌握基坑在施工过程中的变形情况,确保施工安全。
2、为优化施工方案提供数据支持,保障工程质量。
3、预警可能出现的危险情况,以便采取相应的应急措施。
三、监测内容1、水平位移监测在基坑周边设置观测点,采用全站仪或经纬仪进行定期观测,测量水平位移量。
2、竖向位移监测使用水准仪对观测点进行高程测量,监测基坑的竖向位移情况。
3、深层水平位移监测通过埋设测斜管,利用测斜仪测量不同深度处的水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。
5、地下水位监测设置水位观测井,定期测量地下水位的变化。
6、周边建筑物及道路沉降监测在周边建筑物和道路上设置观测点,监测其沉降情况。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,重点部位适当加密。
2、深层水平位移监测点在基坑周边的关键位置埋设测斜管,每边不少于_____个。
3、支撑轴力监测点选择受力较大的支撑构件,每个构件布置_____个轴力计。
4、地下水位监测点在基坑周边均匀布置水位观测井,间距约为_____米。
5、周边建筑物及道路沉降监测点在建筑物角点和道路沿线每隔_____米设置一个观测点。
五、监测频率1、开挖期间每天监测_____次。
2、底板浇筑完成后每_____天监测一次。
3、主体结构施工期间每_____周监测一次。
4、遇到特殊情况(如暴雨、周边荷载突然增大等)加密监测频率。
六、监测方法及仪器1、水平位移监测采用全站仪或经纬仪进行测量,测量精度不低于_____毫米。
2、竖向位移监测使用高精度水准仪,测量精度不低于_____毫米。
3、深层水平位移监测使用测斜仪进行测量,分辨率不低于_____毫米/米。
4、支撑轴力监测采用轴力计进行监测,测量精度不低于_____kN。
深基坑施工监测方案深基坑施工是一项技术难度较高的建筑工程,它的建设需要实施科学的监测和管理。
为了保障深基坑施工的安全和顺利进行,需要制定合理的监测方案,对施工过程中的各种因素进行实时监测和数据采集。
一、深基坑施工监测的重要性深基坑施工是建筑工程中的一个重要环节,涉及到土木工程、地铁建设、隧道工程等领域。
然而,由于地质环境的复杂性和工程本身的技术难度,深基坑施工的安全性和可靠性存在一定的风险。
这时,深基坑施工监测便显得尤为重要。
深基坑工程主要具有以下几个特点:1. 基坑深度大,施工周期长,工程量大;2. 施工过程中受到地质和地形条件的影响;3. 建设过程中需要使用大量设备机械和人力,对土体结构造成一定的影响;4. 深基坑施工对周围环境有一定的影响,需要注意环境保护问题。
综上所述,深基坑施工监测的重要性不言而喻。
建立一个全方位、科学合理的监测方案,能够有效预防和控制潜在的安全风险,为施工的安全和可靠提供有力保障。
二、深基坑施工监测的内容深基坑施工监测的内容主要包括三个方面:地面位移监测、基坑内水位监测、基坑周围建筑物变形监测。
1. 地面位移监测地面位移监测主要是为了控制施工过程中可能会出现的变形情况,以保证工程的稳定性和安全性。
地面位移监测原理较为简单,将一定数量的监测点布设在基坑周围,定期进行数据采集和分析。
监测点的位置应该考虑到地质条件、基坑大小以及基坑周围建筑物等因素,以使监测结果更加准确和可靠。
2. 基坑内水位监测基坑内水位监测是深基坑施工中的另一项重要内容。
深基坑施工常常会遇到地下水的问题,基坑内的水位变化会直接影响到施工的进度和效率。
基坑内水位监测的主要目的是为了保证基坑内的水位在可控范围内,避免因无法控制水位而导致的安全事故。
常用的监测方法有静压水位、动态水位、水量监测。
3. 基坑周围建筑物变形监测施工基坑建设过程中,基坑周围的建筑物变形状态需要被监测,以便及时处理。
在基坑施工过程中,由于切、挖、垫等施工作业可能会引起基坑周边建筑物的不同程度的沉降和变形。
深基坑工程安全监测方案设计
1、概述
深基坑工程在施工过程中往往涉及到多种风险因素,如地面塌陷、渗水、倾斜、沉降等。
因此,对于深基坑工程的安全监测是必不可少的。
本文设计的深基坑工程安全监测方案分为四个部分,分别是监测目标、监测内容、监测方法和监测报告。
通过这样的方案设计,可以在深基坑工程施工过程中及时发现、预防和解决问题,保证施工的顺利进行,同时达到对工程进行安全管理的目的。
2、监测目标
(1)土体稳定性监测
在深基坑工程施工过程中,土体的稳定性是一个需要重点关注的问题。
土体的稳定性一旦受到影响,可能会导致基坑盖板下沉、地面塌陷等安全问题。
因此,需要对深基坑施工现场土体的稳定性进行实时监测,以及时发现土体稳定性问题,采取相应的措施进行处理。
(2)基坑周边建筑物沉降监测
在深基坑工程施工过程中,周边建筑物的沉降也是一个需要关注的问题。
当基坑深度增加时,周边建筑物可能会发生沉降,对建筑物的安全有影响。
深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
深基坑监测方案1. 引言深基坑是为了建造地下结构而挖掘的较大深度的土木工程构筑物。
由于其特殊的性质,必须采取一系列的监测措施来确保工程的安全性和稳定性。
本文档旨在提供一个深基坑监测方案,为工程监理和相关人员提供指导。
2. 监测目标深基坑监测的目标是评估施工过程中的地下水位变化、土体变形、周边地表沉降等影响因素,以及评估施工对周边建筑物和地下管线的影响。
监测数据将用于指导工程施工及紧急干预,并可以作为后续类似工程设计和施工的参考。
3. 监测方案3.1 地下水位监测地下水位监测是深基坑监测中至关重要的一项任务。
主要包括监测地下水位变化、地下水压力变化、渗流速度等参数。
常用的方法包括:•安装水位计和压力计进行实时监测;•对监测数据进行记录和分析,以识别地下水的变化趋势;•根据地下水位和压力变化对施工过程进行调整。
3.2 土体变形监测土体变形监测是深基坑监测的重要内容之一,旨在评估土体的变形程度和趋势。
常用的方法包括:•安装应变计、测斜仪等监测设备,监测土体的变形;•对监测数据进行记录和分析,以识别土体变形的趋势和影响;•根据土体变形情况调整施工方案。
3.3 周边建筑物和地下管线监测深基坑施工往往会对周边的建筑物和地下管线产生影响,因此,周边建筑物和地下管线的监测至关重要。
常用的方法包括:•安装挠度计、位移计等监测设备,监测周边建筑物和地下管线的变形情况;•对监测数据进行记录和分析,以识别建筑物和管线的变形趋势和受力状况;•根据监测结果采取相应措施,防止或减小建筑物和管线的损坏。
4. 监测频率和数据处理4.1 监测频率根据基坑的深度和施工过程的需要,确定监测频率。
一般来说,地下水位和土体变形监测应采用实时或近实时的监测方式,以及较密集的监测点位,以保证数据的准确性和及时性。
周边建筑物和地下管线的监测可以根据实际需要进行定期监测。
4.2 数据处理监测数据的处理分为实时处理和后期分析两个阶段。
实时处理主要用于监测数据的收集、传输和展示,以便及时判断基坑施工的安全性。
一、编制依据1. 《建筑深基坑基坑工程施工安全技术规范》(JGJ311-2013)2. 《建筑基坑工程监测技术规范》(GB50497-2009)3. 《建筑工程安全生产管理条例》(国务院令393号)4. 项目相关设计文件及施工图纸二、编制原则1. 安全第一、预防为主,确保深基坑施工安全;2. 科学监测、合理分析,为施工提供依据;3. 系统全面、责任明确,确保监控工作顺利进行。
三、监控范围1. 基坑支护结构:围护桩、支撑系统、锚杆、土钉等;2. 基坑周边环境:周边建筑物、地下管线、道路等;3. 基坑内部:土体、地下水、施工设备等。
四、监控内容1. 支护结构变形监测:包括桩顶水平位移、桩身水平位移、桩身倾斜等;2. 基坑周边环境监测:包括周边建筑物沉降、地下管线变形、道路沉降等;3. 基坑内部监测:包括土体位移、地下水位、施工设备运行状态等。
五、监控方法1. 测量方法:采用全站仪、激光测距仪、经纬仪等测量仪器进行现场测量;2. 监测频率:根据基坑深度、周边环境、施工进度等因素确定,一般每2-3天进行一次;3. 数据分析:对监测数据进行实时分析,判断基坑安全状态。
六、监控措施1. 建立健全监测体系,明确监控内容、方法和责任人;2. 加强现场巡查,及时发现异常情况;3. 对监测数据进行实时分析,及时调整施工方案;4. 制定应急预案,应对突发事件。
七、监控实施1. 监测人员:配备专业监测人员,负责监测工作的实施;2. 监测设备:配备先进的测量仪器,确保监测数据的准确性;3. 监测数据管理:建立监测数据档案,对监测数据进行归档、整理和分析;4. 监测报告:定期编制监测报告,对基坑安全状态进行评估。
八、结语深基坑监控专项方案的实施,旨在确保深基坑施工安全,降低事故风险。
各部门应高度重视,密切配合,共同做好深基坑监控工作,为工程建设保驾护航。
1.工程概况拟建的切边重卷设备基础位于宁波钢铁股份有限公司场区内C~D轴/2~3线区域内。
基坑平面形状复杂,开挖面积小,基坑尺寸19.00x9.0,基坑最大开挖深度深度4.6m。
坑内工程桩为PHC预应力管桩。
本工程设计±0.000标高相当于黄海高程+3.300m。
2.施工监测的重要性和目的2.1施工监测的重要性在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力和变形中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,基坑开挖所引起的土体变形将在一定程度上改变原有建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。
同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。
基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。
因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。
2.2施工监测的目的基坑采取适当的支护措施是为了防止深基坑开挖影响周围建筑物、设施及地下管线的安全。
但在基坑工程中,由于地质条件、荷载条件、材料性质、施工条件等复杂因素的影响,很难单纯从理论上预测施工中遇到的问题,加之周围环境对基坑变形的严格要求,深基坑临时支护结构及周围环境的监测显得尤为重要。
WORP文档下载可编辑
贵州省铜仁市大兴水利枢纽工程
基坑监测
施工方案
编制
复核
审核
中国葛洲坝集团第五工程有限公司
铜仁市大兴水利枢纽工程输水工程土建及安装A(Ⅱ)标项目部
2016年11月25日
1、工程概况
施工现场包括两个主厂房(一级泵站及二级泵站),基坑开挖深度5.3米~13米。
基坑防护护体系:基坑防护采用材料布对边坡进行遮雨,防止雨水对边坡冲刷导致边坡土质松软进而滑坡。
基坑排水体系:基坑排水采用基坑底部沿周边设置排水沟与集水井进行集水明排。
2、监测方案
2.1 监测设计依据
1.《建筑基坑工程监测技术规范》(GB50497-2009)
2.《建筑基坑支护技术规程》(JGJ120-99)
3.《工程测量规范》(GB50026-2007)
4.《国家一、二等水准测量规范》(GB12897-2006)
5.《建筑变形测量规范》(JGJ8-2007)
6.《建筑边坡工程技术规范》(GB50330-2002)
7.《城市测量规范》(CJJ8-99)
8.《全球定位系统城市测量技术规程》(CJJ73-97)
9.《建筑地基基础工程施工质量验收规范》(GB50202-2002)
2.2 监测项目
监测内容设置取决于工程本身的规模、施工方法、地质条件、环境条件等,本着经济、合理、有效的原则,根据设计要求并结合本工程特点,确定本工程的监测对象为:基坑开挖边坡结构。
依据本工程基坑支护设计方案确定本基坑工程的监测内容和项目如下:
1)开挖边坡水平位移
2)开挖边坡沉降
3)周边建筑物和既有道路沉降观测
4)裂缝监测
2.3 开挖边坡水平位移监测
基坑开挖过程中,由于基坑受外部压力的影响,开挖边坡会产生水平位移,因此在开挖边坡顶上设置水平位移观测点。
测点布置:沿两侧开挖边坡顶均匀布设位移监测点,喷红漆编号做标记,监测点间距约5米。
监测仪器:使用全站仪或者GPS;坡顶水平位移监测点布置图见附图。
2.4 开挖边坡垂直位移监测
开挖边坡顶沉降是基坑基本监测项目,它最直接地反映支护结构外围的土体变形情况。
测点布置:点位借用开挖边坡顶水平位移监测点,在每次观测时将监测点顶端部作为高程测点。
监测仪器:使用全站仪1台,其精度为每公里中误差为±0.3mm,最小显示0.01mm,观测点精度不低于1mm;
监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。
2.5 周边建筑物及道路沉降观测
周边建筑物及道路沉降观测是基坑监测的最基本的项目,以防止基坑开挖过程中基坑外围土体的变化导致周边建筑物及道路的突然变形。
测点布置:建筑物沉降点布设在基坑周边建筑物的四周拐角处及各重要部位,道
路沉降点布设在道路向内侧1米位置处,在基坑开挖前,在道路相应位置处打钢钉设置沉降观测点,间距5米,喷红漆编号做标记。
监测仪器:使用全站仪1台。
监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。
2.6 支撑钢管垂直位移监测
测点布置:测点布置在每个支撑钢管的中部,采用喷红漆编号做标记。
监测仪器:使用全站仪1台。
监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。
2.7 裂缝监测
在基坑周边应选择有代表性的裂缝进行布置,在基坑施工期间当发现新裂缝或原有裂缝有增大趋势时,应及时增设监测点。
每一条裂缝的测点至少设2组,在裂缝的最宽处及裂缝末端宜布设监测点。
2.8 巡视检查
作为仪器监测的补充,本基坑工程整个施工期内,将作巡视检查。
1.巡视检查内容
a.施工工况:基坑开挖分层高度、开挖分段长度是否与设计工况一致,有无超深、超长开挖;基坑场地地表水、地下水排放状况是否正常,基坑降水设施是否正常运转;基坑周围地面堆载是否有超载情况。
b.周边环境:邻近基坑及建筑物施工工况;基坑周边建筑物、道路及地表有无裂缝出现。
c.监测设施:基准点、测点有无破坏现场;有无影响观测工作的障碍物。
2.巡视检查方法和记录
主要依靠目测,可辅以锤、钎、量尺等工器以及摄像机进行。
每次巡视检查应对自然环境、基坑工程检查情况进行详细记录。
如发现异常,应及时通知现场负责人。
巡视检查记录应及时整理,并与当日监测数据综合分析,以便准确地评价基坑的工作状态。
3.施工组织
为做好监测工作,保证在施工过程中万无一失,选派有经验的测量专业人员组成测量技术领导班子,专门领导和研究施工测量技术工作,及测量过程中出现的各种问题。
具体作业要求如下:
a.固定主要观测人员;
b.固定观测仪器、标尺、钢尺及有关附件;
c.固定观测线路、观测方法,露天作业部分应固定观测时间;
d.每天观测前30分钟凉仪器和标尺;
e.前后视的标尺至仪器的距离尽可能相等。
3、监测期和监测频率
在每个测试项目受基坑开挖施工影响之前,必须先测得各项目的初始值。
本工程监测期限为土方开始开挖至下完管土方回填完成。
现场仪器监测的项目及频率如下:
现场仪器监测的监测频率
基坑开挖工程结束后,在厂房施工过程中,若监测数据较稳定可适当减小监测频度,延长监测间隔时间,至基坑回填完毕,结束基坑工程监测。
3.1 监测报警值及异常情况下的监测措施
3.1.1.本基坑工程监测项目的报警值见下表:
本基坑工程监测报警值
注:当监测数据的变化速率达到表中规定值或连续3天超过该值的70%,应立即报警。
3.1.2.异常情况下的监测措施:
(1).当监测数据异常时,分析其原因,必要时进行复测;
(2).当监测数据达到报警值时,在分析原因的同时,应预测出其变化趋势,并加大监测频率,必要时跟踪监测。
4、仪器保养和使用制度
1.测量仪器的使用:
(1)测量人员应负责和检查测量仪器的使用和保管情况;
(2)测量人员必须熟悉和掌握并严格遵守测量专业规程;
(3)凡新仪器使用之前必须进行检验校正,并根据说明书,充分了解仪器的性能后方可使用;
(4)精密测量仪器,必须由测量主管技术人员或在其具体指导下才能使用;
(5)测量人员在使用仪器施测过程中,必须坚守岗位,避免仪器受震、倾倒、和碰撞,雨天或烈日下测量应打伞。
2.测量仪器的维护:
(1)测量仪器必须由熟悉仪器性能和实践经验的专业技术人员经常定期维护。
要按计量管理规定及时送检。
(2)领用和归还仪器时,使用和保管人员应互相进行检查,发现问题及时提出。
(3)测量仪器主管人员必修掌握、检查、了解测量仪器使用、保管情况,要求每年登记一次,发现问题及时处理。
(4)建立测量仪器档案卡片制度,并随同仪器同事调动。
(5)测量仪器必须经公司主管业务部门组织鉴定后方可报废。
(6)增补购置测量仪器必须由公司技术部提出申请,报公司总工程师审批。
测量人员必须严格遵守各项管理制度,严格按施工规范的要求进行操作,认真踏实,不弄虚作假,不敷衍了事,测量数据及时准确,保证施工正常顺利进行,保证施工质量。
5、信息反馈图
当监测数据达到报警值时,应及时发出报警报表,及时采取加密观测措施,并对前期观测数据进行汇总分析,形成有效的信息反馈系统,反馈图见下图:
信息反馈图。