2018年山东省聊城市高唐二中七年级上学期数学期中试卷带解析答案
- 格式:doc
- 大小:217.50 KB
- 文档页数:13
2017-2018学年山东省聊城市高唐二中七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)在﹣2,0,1,﹣4.这四个数中,最大的数是()A.﹣4 B.﹣2 C.0 D.12.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交3.(3分)已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm4.(3分)如果线段AB=12cm,MA+MB=16cm,那么下列说法正确的是()A.点M在线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外5.(3分)(﹣4)3与﹣43()A.互为相反数B.倒数C.相等D.它们的和为﹣24.6.(3分)下列结论中,正确的是()A.0比一切负数都大B.在整数中,1最小C.若有理数a,b满足a>b,则a一定是正数,b一定是负数D.0是最小的整数7.(3分)比﹣3.2大的负整数有()A.1个 B.2个 C.3个 D.4个8.(3分)下列说法错误的是()A.没有最大的正数,却有最大的负整数B.数轴上离原点越远,表示数越大C.0小于一切正数D.正数大于一切负数9.(3分)在1,﹣1,﹣2这三个数中,任意两个数之和的最大值是()A.﹣3 B.﹣1 C.0 D.210.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣311.(3分)若|x﹣3|+|y﹣2|=0,则|x|+|y|的值是()A.5 B.1 C.2 D.012.(3分)若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数二、填空题、(3×5=15)13.(3分)如果盈利200元记作+200元,那么亏损100元记作.14.(3分)绝对值小于3的所有整数的和是.15.(3分)的绝对值是,﹣2的相反数是.16.(3分)|a|=3,则a=.17.(3分)﹣12017+(﹣1)2018=.三、解答题18.(20分)计算:(1)(+23)+(﹣17)+(+6)+(﹣22)(2)12017﹣(1﹣0.5)×(3)﹣3×(﹣)2(4)(﹣32)÷(﹣2)3×3.19.(7分)在数轴上表示下列各数,并用“<”号把它们连接起来.0.5,﹣4,﹣2.5,2,0,﹣0.5.20.(6分)将下列各数填在相应的大括号里:1,﹣5,,﹣4.2,0,,10,﹣,整数:{ …}非负整数:{ …}分数:{ …}负分数:{ …}有理数:{ …}非负有理数:{ …}.21.(6分)已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.22.(10分)一只小蜗牛从某点0出发在一直线上来回爬行,规定向右为正,爬行的各段路程依次为(单位:cm):+5,﹣3,+10,﹣8,﹣6,+12,﹣10请探求下列问题:小蜗牛最后在哪里?小蜗牛离开出发点0最远是多远?23.(10分)如图,已知点C是线段AB的中点,点D是线段AC的中点,点E 是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.24.(10分)观察下面的变形规律:=1﹣,=;=;…解答下列问题:(1)若n为正整数,请你猜测=.(2)求和:+…+.2017-2018学年山东省聊城市高唐二中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)在﹣2,0,1,﹣4.这四个数中,最大的数是()A.﹣4 B.﹣2 C.0 D.1【解答】解:在﹣2,0,1,﹣4.这四个数中,大小顺序为:﹣4<﹣2<0<1,所以最大的数是1.故选:D.2.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.3.(3分)已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm【解答】解:(1)点B在A、C之间时,AC=AB+BC=3+1=4cm;(2)点C在A、B之间时,AC=AB﹣BC=3﹣1=2cm.所以A、C两点间的距离是4cm或2cm.故选:C.4.(3分)如果线段AB=12cm,MA+MB=16cm,那么下列说法正确的是()A.点M在线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外【解答】解:A、当点M在线段AB上时,AM+MB=AB=12cm,故本选项错误;B、如图,AM+BM=16cm,点M在直线AB外,故本选项错误;C、如图当BM=2cm,时,AM+BM=16cm,即M在直线AB上,故本选项错误;D、根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故本选项正确;故选:D.5.(3分)(﹣4)3与﹣43()A.互为相反数B.倒数C.相等D.它们的和为﹣24.【解答】解:(﹣4)3=﹣43=﹣64,故选:C.6.(3分)下列结论中,正确的是()A.0比一切负数都大B.在整数中,1最小C.若有理数a,b满足a>b,则a一定是正数,b一定是负数D.0是最小的整数【解答】解:A、0比一切负数都大,故本选项正确;B、在正整数中,1最小,故本选项错误;C、若有理数a,b满足a>b,无法确定有理数a,b的正负,故本选项错误;D、0是最小的自然数,故本选项错误;故选:A.7.(3分)比﹣3.2大的负整数有()A.1个 B.2个 C.3个 D.4个【解答】解:如图所示,由图可知,比﹣3.2大的负整数有:﹣3,﹣2,﹣1共3个.故选:C.8.(3分)下列说法错误的是()A.没有最大的正数,却有最大的负整数B.数轴上离原点越远,表示数越大C.0小于一切正数D.正数大于一切负数【解答】解:数轴上离远点越远,表示的数的绝对值越大,故B错误;故选:B.9.(3分)在1,﹣1,﹣2这三个数中,任意两个数之和的最大值是()A.﹣3 B.﹣1 C.0 D.2【解答】解:1+(﹣1)=0.故选:C.10.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选:A.11.(3分)若|x﹣3|+|y﹣2|=0,则|x|+|y|的值是()A.5 B.1 C.2 D.0【解答】解:由题意得,x﹣3=0,y﹣2=0,解得,x=3,y=2,则|x|+|y|=5,故选:A.12.(3分)若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数【解答】解:两个数的商为﹣1,则这两个数,符号相反,且绝对值相同,∴是一对非零相反数.故选:D.二、填空题、(3×5=15)13.(3分)如果盈利200元记作+200元,那么亏损100元记作﹣100元.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损100元记作﹣100元.故答案为﹣100元.14.(3分)绝对值小于3的所有整数的和是0.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.15.(3分)的绝对值是,﹣2的相反数是2.【解答】解:的绝对值是,﹣2的相反数是:2.故答案为:,2.16.(3分)|a|=3,则a=±3.【解答】解:∵|a|=3,∴a=±3.故答案为:±3.17.(3分)﹣12017+(﹣1)2018=0.【解答】解:原式=﹣1+1=0,故答案为:0三、解答题18.(20分)计算:(1)(+23)+(﹣17)+(+6)+(﹣22)(2)12017﹣(1﹣0.5)×(3)﹣3×(﹣)2(4)(﹣32)÷(﹣2)3×3.【解答】解:(1)原式=[(+23)+(+6)]+[(﹣17)+(﹣22)]=(+29)+(﹣39)=﹣10;(2)原式=﹣1﹣=﹣;(3)原式=﹣3×=﹣;(4)原式=(﹣32)÷(﹣8)×=4×=15.19.(7分)在数轴上表示下列各数,并用“<”号把它们连接起来.0.5,﹣4,﹣2.5,2,0,﹣0.5.【解答】解:如图所示:则﹣4<﹣2.5<﹣0.5<0<0.5<2.20.(6分)将下列各数填在相应的大括号里:1,﹣5,,﹣4.2,0,,10,﹣,整数:{ 1,﹣5,0,10…}非负整数:{ 1,0,10…}分数:{ ,﹣4.2,,﹣…}负分数:{ ﹣4.2,﹣…}有理数:{ 1,﹣5,,﹣4.2,0,,10,﹣…}非负有理数:{ 1,,0,,10…}.【解答】解:整数:{1,﹣5,0,10,…}非负整数:{1,0,10,…}分数:{,﹣4.2,,﹣…}负分数:{﹣4.2,﹣…}有理数:{1,﹣5,,﹣4.2,0,,10,﹣…}非负有理数:{1,,0,,10,…},故答案为:1,﹣5,0,10;1,0,10;,﹣4.2,,﹣;﹣4.2,﹣;1,﹣5,,﹣4.2,0,,10,﹣;1,,0,,10.21.(6分)已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【解答】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.22.(10分)一只小蜗牛从某点0出发在一直线上来回爬行,规定向右为正,爬行的各段路程依次为(单位:cm):+5,﹣3,+10,﹣8,﹣6,+12,﹣10请探求下列问题:小蜗牛最后在哪里?小蜗牛离开出发点0最远是多远?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=0,所以小蜗牛最后在出发点0;(2)│+5│=5,│(+5)+(﹣3)│=2,|(+5)+(﹣3)+(+10)│=12,│(+5)+(﹣3)+(+10)+(﹣8)│=4,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)│=2,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)│=10,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)│=0.所以小蜗牛离开出发点0最远是12cm.23.(10分)如图,已知点C是线段AB的中点,点D是线段AC的中点,点E 是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.【解答】解:(1)因为点D是线段AC的中点,点E是线段BC的中点,所以AC=2CD,BC=2CE,所以AB=AC+BC=2(DC+CE)=2DE=18cm;(2)因为点E是线段BC的中点,所以BC=2CE=10cm.因为点C是线段AB的中点,点D是线段AC的中点,所以DC=AC=BC=5cm,所以DB=DC+CB=5+10=15cm.24.(10分)观察下面的变形规律:=1﹣,=;=;…解答下列问题:(1)若n 为正整数,请你猜测=﹣.(2)求和:+…+.【解答】解:(1)=﹣;故答案为:﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=.。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。
2018年七年级数学上学期期中检测试卷(含答案和解释)距离期中考试越来越近了,期中考试考查的是整个学期的学习内容,内容很多。
各科都已经进入复习阶段,现在大家都在忙碌的复习阶段。
我们一起来看看这篇七年级数学上学期期中检测试卷吧!一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A. 15107B. 0.15109C. 1.5108D. 1.5亿2.下列不是有相反意义的量是()A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元3. 的平方根是()A. 4B. 4C. 2D. 24.①倒数是本身的数是②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有()个.A. 1B. 2C. 3D. 45.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是()A. B. 3 C. D.6.在、﹣、、中最大的数是()A. B. C. ﹣ D.7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是()A. AB. BC. CD. D8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有()个.A. 2B. 3C. 4D. 59.由半圆和直角三角形组成的图形,如图,空白部分面积等于(取3.14,精确到0.1)()A. 15.0B. 15.1C. 15.2D. 15.310.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在()A. 第50行第50个B. 50行第 51个C. 第51行第50个D. 第51行51个11.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃()天.A. 500mB. 600mC.D.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是.13.下列的代数式:﹣x2y,0,,,,中单项式有个.14 .x的倍与y的平方的和可表示为.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成个.16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少cm.17.若5x2y|m|﹣ (m+1)y2﹣3是关于字母x、y的3次3项式,则m=.三、解答(共66分)18.计算:(1)(﹣ + ﹣ )(﹣48)(2)(﹣2) ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+ b)2018+b2018的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y 的值.20.在数轴上表示下列各数,并用连接,|﹣3|,0,,,(﹣1)2.21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.22.王明从甲地到乙地骑自行车共100千米路程,原计划用V 千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度. (1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.24.阅读材料:求1+2+22+23++22018的值.解:设S=1+2+22++22018,将等式两边同时乘以2得:2S=2+22++22018,将下式减去上式得:2S﹣S=22018﹣1,即S=1+2+22++22018=22018﹣1.请你按照此法计算:(1)1+2+22++210(2)1+3+32+33++3n(其中n为正整数).参考答案与试题解析一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A. 15107B. 0.15109C. 1.5108D. 1.5亿考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将150000000用科学记数法表示为:1.5108.2.下列不是有相反意义的量是()A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元考点:正数和负数.分析:首先知道正负数的含义,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.解答:解:A、上升5米与下降3米具有相反意义,不符合题意,此选项错误,B、根据零下与零下没有相反意义,符合题意,此选项正确,C、高出海拔100米与低于海拔10米具有相反意义,不符合题意,此选项错误,D、亏损与收入具有相反意义,不符合题意,此选项错误,3. 的平方根是()A. 4B. 4C. 2D. 2考点:平方根;算术平方根.分析:根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.4.(3分)(2018秋余姚市校级期中)①倒数是本身的数是②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有()个.A. 1B. 2C. 3D. 4考点:立方根;绝对值;倒数;有理数的乘方.分析:根据倒数,立方根,有理数的乘方,绝对值的意义进行判断即可.解答:解:∵倒数是本身的数是立方根是本身的数是0.1,﹣1;平方等于本身的数0.1;绝对值是本身的数是0和正数,5.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是()A. B. 3 C. D.考点:实数与数轴.分析:根据数轴上点的坐标即可列出算式( +1)﹣( ﹣2),求出即可.解答:解:∵数轴上有两点A、B分别是﹣2, +1,6.在、﹣、、中最大的数是()A. B. C. ﹣ D.考点:实数大小比较.分析:首先利用平方根以及立方根分别化简各数,进而比较得出即可.解答:解:∵ =﹣、﹣ =﹣0.1、 =﹣0.1、 =﹣ =﹣0.04,7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是()A. AB. BC. CD. D考点:估算无理数的大小;实数与数轴.分析:利用夹逼法求得a,然后在数轴上找(2+a).解答:解:∵﹣27﹣10﹣8,,即﹣3﹣2,则a=﹣2,2+a=0,故在数轴上与2+a最接近的数所表示的点是B.8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有()个.A. 2B. 3C. 4D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.9.由半圆和直角三角形组成的图形,如图,空白部分面积等于(取3.14,精确到0.1)()A. 15.0B. 15.1C. 15.2D. 15.3考点:有理数的混合运算.分析:空白部分面积等于直径为10半圆的面积减去底为8,高为6的直角三角形的面积即可.解答:解: ( )2﹣ 6810.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在()A. 第50行第50个B. 50行第51个C. 第51行第50个D.第51行51个考点:规律型:数字的变化类.分析:由排列的数可知:第几行就有几个数字,从第二行开始开头的数字都是所在的行数减去1,在第50行出现的数字是从49﹣98,从第51行出现的数字是从50﹣100,由此得出答案即可.解答:解:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6第50行 49 5098第51行 50 5110011.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃()天.A. 500mB. 600mC.D.考点:列代数式.专题:应用题.分析:根据已知10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,可求出那么m头大象1天的食品可供100只老鼠吃多少天.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是 3 .考点:相反数.分析:一个数的相反数就是在这个数前面添上﹣号.解答:解:﹣(﹣3)=3,13.下列的代数式:﹣x2y,0,,,,中单项式有 3 个. 考点:单项式.分析:根据单项式的概念求解即可.解答:解:单项式有::﹣x2y,0,,共3个.14.x的倍与y的平方的和可表示为 .考点:列代数式.分析:先求x的倍,再加上y的平方即可.解答:解:x的倍与y的平方的和可表示为 x+y2.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成 128 个.考点:有理数的乘方.专题:计算题.分析:根据题意列出算式计算,即可得到结果.解答:解:根据题意得:226=128(个),16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少 (10﹣ ) cm.考点:立方根.专题:计算题.分析:根据题意列出算式,计算即可.解答:解:根据题意得:10﹣,17.若5x2y|m|﹣ (m+1)y2﹣3是关于字母x、y的3次3项式,则m= 1 .考点:多项式.分析:直接利用多项式的定义得出|m|=1,m+10,进而求出即可.解答:解:∵5x2y|m|﹣ (m+1)y2﹣3是关于字母x、y的3次3项式,三、解答(共66分)18.计算:(1)(﹣ + ﹣ )(﹣48)(2)(﹣2) ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )考点:实数的运算.分析: (1)直接利用有理数乘法运算法则求出即可;(2)利用绝对值以及乘方运算法则化简求出即可;(3)分别利用平方根、立方根的性质化简各数,进而求出;(4)利用有理数混合运算法则求出即可.解答:解:(1)(﹣ + ﹣ )(﹣48)=16﹣8+4=12;(2)(﹣2) ﹣(﹣5)=232 +5=405 ;(3)﹣﹣19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+b)2018+b2018的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y 的值.考点:代数式求值;非负数的性质:绝对值.分析: (1)根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解;(2)根据代数式2y2﹣y+5的值等于﹣2,即可求得2y2﹣y的值为﹣7,5﹣2y2+y可以变形为:5﹣(2y2﹣y),代入即可求解.解答: (1)解:∵|a﹣2|+|b+1|=0,解得:a=2,b=﹣1,原式(a+b)2018+b2018=(2﹣1)2018+(﹣1)2018=1+1=2 (2)∵2y2﹣y+5=﹣2,20.在数轴上表示下列各数,并用连接,|﹣3|,0,,,(﹣1)2.考点:实数大小比较;实数与数轴.分析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:|﹣3|=3, =﹣2,(﹣1)2=1,21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.考点:实数的运算.分析:分别利用立方根以及平方根和绝对值的性质得出x,y,z的值进而求出即可.解答:解:∵3是2x﹣1的平方根,2x﹣1=9,解得:x=5,∵y是8的立方根,y=2,∵z是绝对值为9的数,22.王明从甲地到乙地骑自行车共100千米路程,原计划用V 千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.考点:代数式求值;列代数式.分析:根据路程=速度时间的变形公式即可表示王明从甲地到乙地用的时间;将V=15代入即可.解答:解:由时间= ,可得:(时),王明从甲地到乙地用了小时;当V=15千米/时时,= (小时),23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度. (1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为 ;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.考点:算术平方根;三角形的面积.分析: (1)根据面积得出边长即可;(2)利用矩形的面积减去三个三角形的面积即为三角形ABC 的面积,再根据勾股定理求AB即可.解答:解:(1)如图,正方形的边长为 ;(2)S=23﹣ 12﹣ 13﹣ 12=6﹣1﹣1.5﹣1=2.5,24.阅读材料:求1+2+22+23++22018的值.解:设S=1+2+22++22018,将等式两边同时乘以2得:2S=2+22++22018,将下式减去上式得:2S﹣S=22018﹣1,即S=1+2+22++22018=22018﹣1.请你按照此法计算:(1)1+2+22++210(2)1+3+32+33++3n(其中n为正整数).考点:有理数的混合运算.专题:阅读型.分析: (1)设原式=S,两边乘以2变形后,相减求出S即可;(2)设原式=S,两边乘以3变形后,相减求出S即可.解答:解:(1)设S=1+2+22++210,两边乘以2得:2S=2+22++211,两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33++3n,两边乘以3得:3S=3+32+33++3n+1,两式相减得:3S﹣S=3n+1﹣1,这篇七年级数学上学期期中检测试卷的内容,希望会对各位同学带来很大的帮助。
山东省聊城市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1.下列实数中的无理数是( )A B D .2272.如图所示的几何体,它的左视图是( )A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )A .81.2510⨯亿次/秒B .91.2510⨯亿次/秒C .101.2510⨯亿次/秒 D. 812.510⨯亿次/秒4.如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=,25CDE ∠=,则DEF ∠的度数是( )A .110B .115C .120D .1255.下列计算错误的是( )A .2024a a a a ÷⋅=B .202()1a a a ÷⋅=C .87( 1.5)( 1.5) 1.5-÷-=-D .871.5( 1.5) 1.5-÷-=-6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的是( )A .B .C .D .7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( )A .25B .27.5C .30D .358.下列计算正确的是( )A .=B =C .=D -=9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .912(,)55-B .129(,)55-C .1612(,)55-D .1216(,)55- 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.某十字路口设有交通信灯,东西向信灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.用一块圆心角为216的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等. []1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a =________,b =________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH AE ⊥,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE BF =.(2)若正方形边长是5,2BE =,求AF 的长.21.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=,在点D 处测得A 点、C 点的仰角分别为9,15.6,如图2.求保温板AC 的长是多少米?(精确到0.1米)(参考数据:0.862≈,sin 90.16≈,cos90.99≈,tan 90.16≈,sin15.60.27≈,cos15.60.96≈,tan15.60.28≈.)23.如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)k y x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)k y x x =>图象上的两点,连接AB ,点(2,)C n -是函数2(0)k y x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式;(3)求ABC ∆的面积.24.如图,在Rt ABC ∆中,90C ∠=,BE 平分ABC ∠交AC 于点E ,作E D E B ⊥交AB 于点D ,O 是BED ∆的外接圆.(1)求证:AC 是O 的切线; (2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t ≤≤.(1)求出这条抛物线的表达式;(2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t ≤≤的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?。
2018年七年级上学期数学期中检测试卷(含答案和解释)又到了一年一度的期中考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇2018年七年级上学期数学期中检测试卷,希望可以帮助到大家!一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018 ,0中,正数有()A. 1个B. 2个C. 3个D. 4个2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A. a1B. b1C. a﹣1D. b04.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 45.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 46.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=117.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是38.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a1 0.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是,的倒数为.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为米/秒.13.比较大小:﹣5 2,﹣﹣ .14.若3a2﹣a﹣2=0,则5+2a﹣6a2=.15.若|a|=8,|b|=5,且a+b0,那么a﹣b=.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + =(直接写出答案).18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有块,当黑砖n=2时,白砖有块,当黑砖n=3时,白砖有块.(2)第n个图案中,白色地砖共块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC(,),BD(,),C(+1,);(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2018,0中,正数有()A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2018=1是正数,0既不是正数也不是负数,2.下列各式计算正确的是()A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9 考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()A.a1B. b1C. a﹣1D. b0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a0A、a1,选项错误;B、b1,选项错误;C、a﹣1,故选项正确;4.在,,0,﹣0.010010001四个数中,有理数的个数为()A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为()A. 2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值. 解答:解:根据题意,得,6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是()A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中7.下列关于单项式一的说法中,正确的是()A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.8.下列每组中的两个代数式,属于同类项的是()A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可. 解答:解:A、中,所含字母相同,相同字母的指数不相等,这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为()A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣ .考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .12.太阳光的速度是300 000 000米/秒,用科学记数法表示为 3108 米/秒.考点:科学记数法表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.解答:解:将300 000 000用科学记数法表示为3108. 13.比较大小:﹣5 2,﹣﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣52,14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,3a2﹣a=2,15.若|a|=8,|b|=5,且a+b0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,a=8,b=∵a+b0,a=8,b=5.当a=8,b=5时,a﹣b=3;16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则 + = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为 1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案. 解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣ + )(﹣48)(3)16(﹣2)3﹣(﹣ )(﹣4)(4)﹣12﹣(﹣10) 2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1(﹣48)﹣ (﹣48)+ (﹣48)=﹣48+8﹣36=﹣76;(3)原式=16(﹣8)﹣=﹣2﹣=﹣2 ;20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有 10 块,当黑砖n=3时,白砖有 14 块.(2)第n个图案中,白色地砖共 4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油? 考点:整式的加减.专题:计算题.分析: (1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油; (2)当x=5时,6x2﹣18x=652﹣185=150﹣90=60(桶),25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油822=164升,26.如图,在55的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:AB(+1,+4),从B到A的爬行路线为:BA(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)AC( +3 , +4 ),BD( +3 ,﹣2 ),C D (+1,﹣2 );(2)若甲虫A的爬行路线为ABCD,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置. 分析: (1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)AC(+3,+4);BD(+3,﹣2);CD(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:AB表示为:(1,4),BC记为(2,0)CD 记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;27.将长为1,宽为a的长方形纸片((1)第一次操作后,剩下的矩形两边长分别为 a与1﹣a ;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析: (1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a ﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片(第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;②当1﹣a2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a2a﹣1.所以,是所求的一个值;这篇2018年七年级上学期数学期中检测试卷的内容,希望会对各位同学带来很大的帮助。
山东省聊城市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分)在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A .B . ﹣2C . 0D . ﹣3.42. (2分)下列计算结果为负数的是()A . ﹣1+2B . |﹣1|C .D . ﹣2﹣13. (2分) (2017七上·上城期中) 如图,数轴上有,,,四个整数点(即各点均表示整数),且.若,两点所表示的数分别是和,则线段的中点所表示的数是().A .B .C .D .4. (2分)计算×(﹣8)÷(﹣)结果等于()A . 8B . ﹣8C .D . 15. (2分)若a=, b=,那么ab的值等于()A . -8B . 8C . -16D . 166. (2分) (2018七上·海口期中) 用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A . 0.1(精确到0.1)B . 0.05(精确到百分位)C . 0.051(精确到千分位)D . 0.0502(精确到0.0001)7. (2分) (2019七上·凉州月考) 下列说法正确的是()A . -3的倒数是B . 若|a|=2,则a=2C . -(-5)是-5的相反数D . -m2一定是负数8. (2分)合并同类项m﹣3m+5m﹣7m+…+2013m的结果为()A . 0B . 1007mC . mD . 以上答案都不对9. (2分)在-()=-x2+3x-2的括号里应填的代数式是()A . x2-3x-2B . x2+3x-2C . x2-3x+2D . x2+3x+210. (2分) (2018七上·长春月考) 下列各组数中,相等的一组是()A . -2和 -(-2)B . -|-2|和 -(-2)C . 2和|-2|D . -2和|-2|二、细心填一填 (共10题;共11分)11. (1分) (2018七上·大庆期末) 如果收入50元,记作+50元,那么支出30元记作________元.12. (1分) (2018七上·南岗月考) ﹣的绝对值的相反数与﹣2 的相反数的差是________.13. (1分)如果零上2℃记作+2℃,那么零下5℃记作________℃.14. (2分) (2019七上·通州期中) 有理数a在数轴上的位置如图.用“>”或”<"填空: ________0,-a+1________0.15. (1分)单项式的次数是________ .16. (1分) (2020七上·合山月考) 截至2018年,潜山市下辖11个镇、5个乡,另设有1个开发区、1个度假区,地区生产总值169.58亿元。
2018年人教版初一数学上册期中试卷及答案2018-201年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.或5B.﹣1或5 C.﹣1或﹣5D.﹣2或5 2.|﹣2|的倒数是()A.B.C.2D.﹣23.下列式子中,正确的是()A.5﹣|﹣5|=10(﹣22)=44.我国国土面积约960万平方千米,用科学记数法可表示为()平方千米.B.(﹣1)99=﹣99C.﹣102=(﹣10)×(﹣10)D.﹣A.96×105B.960×104C.9.6×107D.9.6×1065.下列各对数中,数值相等的是()A.23和32B.(﹣2)2和﹣22C.2和|﹣2|D.()2和6.下列各式中,不是同类项的是()A.x2y和x2yB.﹣ab和baC.﹣abcx2和﹣x2abcD.x2y和xy37.下列语句中错误的选项是()A.数字也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣8.组成多项式2x2﹣3x﹣5的各项是()A.2x2,3x,5B.2,﹣3,﹣5C.2x2,﹣3x,﹣5D.2x2﹣3x﹣59.已知:(b+3)2+|a﹣2|=0,则ba的值为()A.﹣9B.9C.﹣6D.610.b在数轴上的对应的位置如图所示,有理数a、则下列各式中正确的是()第1页(共15页)A.a+b<B.a+b>C.a﹣b=0D.a﹣b>二、填空题:(每题3分,共24分)11.南通市某天上午的温度是5℃,中午又上升了3℃,下战书因为冷氛围南下,到夜间又降落了9℃,则这天夜间的温度是℃.12.﹣的相反数是;绝对值是.13.若﹣3amb3与4a2bn是同类项,则3m﹣2n=.14.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点.15.矩形的周长为30,若一边长用字母x透露表现,则此矩形的面积是.16.在,﹣1,|﹣2|,﹣(﹣3),5,3.8,﹣1,,(﹣3)2,﹣42中,正整数的个数是个.17.单项式﹣的系数是,次数是.18.如图是一个数值转换机,若输入的x为﹣5,则输出的成效是.3、解答题(要写出解答步骤.共46分)19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.20.计算(1)12﹣(﹣16)+(﹣4)﹣5(2)1÷(﹣1)+÷(﹣4)×(﹣2010)第2页(共15页)(3)﹣2﹣|﹣3|+(﹣2)2(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2.21.按请求完成下列各题(1)化简:3a+(﹣8a+2)﹣3(3a﹣4).(2)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.22.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式透露表现广场空隙的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).23.某自行车厂计整齐周出产自行车1400辆,均匀每天出产200辆,但因为各种缘故原由,实践每天出产量与计划量相比有出入.下表是某周的出产情况(超产记为正、减产记为负):星期增减一+5二﹣2三﹣4四+13五﹣10六+16日﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多出产自行车几何辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?第3页(共15页)一、选择题(每题3分,共30分)1.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.或5B.﹣1或5 C.﹣1或﹣5D.﹣2或5 【考点】数轴.【阐发】按照题意得出两种情况,当点在透露表现2的点的右侧时,当点在透露表现2的点的左侧时,划分求出便可.【解答】解:当点在表示2的点的右边时,表示的数是2+3=5,当点在表示2的点的左边时,表示的数是2﹣3=﹣1.故选:B.2.|﹣2|的倒数是()A.B.C.2D.﹣2【考点】倒数;绝对值.【分析】先求绝对值,然后按照倒数的定义求解即可.【解答】解:|﹣2|=2,2的倒数是.应选:A.3.下列式子中,正确的是()A.5﹣|﹣5|=10(﹣22)=4【考点】有理数的乘方;绝对值.【阐发】按照绝对值的性质,有理数的乘方对各选项阐发判断后使用排除法求解.【解答】解:A、5﹣|﹣5|=5﹣5=0,故本选项错误;B、(﹣1)99=﹣1,故本选项错误;C、﹣102=﹣10×10,故本选项错误;第4页(共15页)B.(﹣1)99=﹣99C.﹣102=(﹣10)×(﹣10)D.﹣D、﹣(﹣22)=﹣(﹣4)=4,故本选项精确.故选D.4.我国国土面积约960万平方千米,用科学记数法可透露表现为()平方千米.A.96×105B.960×104C.9.6×107D.9.6×106【考点】科学记数法—透露表现较大的数.【阐发】科学记数法就是将一个数字透露表现成a×10的n次幂的形式,其中1≤|a|<10,n透露表现整数.n为整数位数减1,即从左侧第一名开始,在首位非零的背面加上小数点,再乘以10的n次幂.【解答】解:960万用科学记数法表示为9.6×106.应选D.5.下列各对数中,数值相称的是()A.23和32B.(﹣2)2和﹣22C.2和|﹣2|D.()2和【考点】有理数的乘方.【分析】根据有理数的乘方的定义对各选项分别进行计算即可进行判断.【解答】解:A、23=8,32=9,不相等,故本选项错误;B、(﹣2)2=4,﹣22=﹣4,不相等,故本选项错误;C、2和|﹣2|=2相等,故本选项正确;D、()2=,应选C.6.下列各式中,不是同类项的是()A.x2y和x2yB.﹣ab和baC.﹣abcx2和﹣x2abc【考点】同类项.【阐发】按照同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:A字母相同,且相同的字母的指数也相同,故A是同类项;第5页(共15页)=,不相等,故本选项错误.D.x2y和xy3B字母相同,且相同的字母的指数也相同,故B是同类项;C字母相同,且相同的字母的指数也相同,故C是同类项;D相同字母的指数不同,故D不是同类项;故选:D.7.下列语句中错误的选项是()A.数字也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【阐发】按照单项式系数、次数的界说来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单唯一个数字也是单项式.【解答】解:零丁的一个数字也是单项式,故A精确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D精确.故选B.8.组成多项式2x2﹣3x﹣5的各项是()A.2x2,3x,5B.2,﹣3,﹣5【考点】多项式.【阐发】按照多项式项的概念解答.【解答】解:多项式2x2﹣3x﹣5的各项是:2x2、﹣3x、﹣5.应选C.9.已知:(b+3)2+|a﹣2|=0,则ba的值为()A.﹣9B.9C.2x2,﹣3x,﹣5D.2x2﹣3x﹣5C.﹣6D.6第6页(共15页)【考点】非负数的性质:偶次方;非负数的性质:绝对值.【阐发】按照非负数的性质列式求出a、b的值,然后代入代数式进行计较便可得解.【解答】解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,ba=(﹣3)2=9.故选B.10.b在数轴上的对应的位置如图所示,有理数a、则下列各式中精确的选项是()A.a+b<B.a+b>C.a﹣b=0D.a﹣b>【考点】数轴.【分析】首先根据数轴确定a,b的符号和大小,再根据有理数的运算法则进行分析判断.【解答】解:由数轴,得a<<b,|a|>|b|.A、根据异号两数相加,取绝对值较大的数的符号,则a+b<,符合题意;B、根据异号两数相加,取绝对值较大的数的符号,则a+b<,不符合题意;C、较小的数减去较大的数,则差一定小于,则a﹣b<,不符合题意;D、较小的数减去较大的数,则差一定小于,则a﹣b<,不符合题意.故选A.二、填空题:(每题3分,共24分)11.南通市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是﹣1℃.【考点】有理数的加减混合运算.【分析】根据上升为正,下降为负,列式计算即可.【解答】解:依题意列式为:5+3+(﹣9)=5+3﹣9=8﹣9=﹣1(℃).所以这天夜间的温度是﹣1℃.故答案为:﹣1.第7页(共15页)12.﹣的相反数是;绝对值是.【考点】相反数;绝对值.【阐发】按照只要符号分歧的两个数互为相反数,可得一个数的相反数,按照负数的绝对值是它的相反数,可得答案.【解答】解:﹣的相反数是;绝对值是,故答案为:,.13.若﹣3amb3与4a2bn是同类项,则3m﹣2n=.【考点】同类项.【阐发】按照同类项的界说间接可得到m、n的值.【解答】解:∵单项式﹣2a2bm与单项式3anb是同类项,∴m=2,n=3.∴3m﹣2n=3×2﹣2×3=0故答案为:.14.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月20日18点.【考点】有理数的减法.=﹣6,【阐发】由题意得8﹣14=8+(﹣14)则应是芝加哥时间20日[24+(﹣6)]点.【解答】解:根据题意得,8﹣14=8+(﹣14)=﹣6,24+(﹣6)=18.故答案为20;18.15.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).【考点】列代数式.【分析】根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积第8页(共15页)公式便可求解.【解答】解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).16.在,﹣1,|﹣2|,﹣(﹣3),5,3.8,﹣1,,(﹣3)2,﹣42中,正整数的个数是4个.【考点】有理数;相反数;绝对值.【分析】根据大于零的整数是正整数,可得答案.【解答】解:不是正整数,3.8不是整数,﹣1是负分数,是分数,﹣42=﹣16是负整数,|﹣2|=2是正整数,﹣(﹣3)=3是正整数,5是正整数,(﹣3)2=9是正整数,故答案为:4.17.单项式﹣【考点】单项式.【分析】根据单项式的系数和次数的概念求解.【解答】解:单项式﹣故答案为:﹣第9页(共15页)的系数是﹣,次数是3.的系数为﹣,次数为3.,3.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的成效是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.三、解答题(要写出解答步骤.共46分)19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.【考点】作图﹣三视图.【分析】根据:从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1,画出三视图即可.【解答】解:三视图如下,第10页(共15页)20.计较(1)12﹣(﹣16)+(﹣4)﹣5(2)1÷(﹣1)+÷(﹣4)×(﹣2010)(3)﹣2﹣|﹣3|+(﹣2)2(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2.【考点】有理数的混合运算.【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘法和除法,然后计算加法即可.(3)第一计较乘方,然后从左向右依次计较便可.(4)首先计算乘方和乘除法,然后计算加减法即可.【解答】解:(1)12﹣(﹣16)+(﹣4)﹣5=28﹣4﹣5=19(2)1÷(﹣1)+÷(﹣4)×(﹣2010)=﹣1+=﹣1(3)﹣2﹣|﹣3|+(﹣2)2=﹣2﹣3+4=﹣1(4)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2=﹣4+(﹣27)×(﹣=﹣4+8﹣3=121.按请求完成下列各题第11页(共15页))﹣3(1)化简:3a+(﹣8a+2)﹣3(3a﹣4).(2)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.【考点】整式的加减—化简求值.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=3a﹣8a+2﹣9a+12=﹣14a+14;(2)原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣.22.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式透露表现广场空隙的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).【考点】列代数式;代数式求值.【阐发】(1)观察可得空隙的面积=长方形的面积﹣圆的面积,把相关数值代入便可;(2)把所给数值代入(1)得到的代数式求值即可.【解答】解:(1)空隙的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=﹣100π(平方米).23.某自行车厂计整齐周出产自行车1400辆,均匀每天出产200辆,但因为各种缘故原由,实践每天出产量与计划量相比有出入.下表是某周的出产情况(超产第12页(共15页)记为正、减产记为负):星期增减一+5二﹣2三﹣4四+13五﹣10六+16日﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多出产自行车几何辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【考点】有理数的加法.【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实践出产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多出产自行车16﹣(﹣10)=26辆;(4)这一周的人为总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=元,故该厂工人这一周的人为总额是元.第13页(共15页)第14页(共15页)。
2018年七年级数学上学期期中考试试题为了更好的迎接考试,在考试中取得好的成绩,编辑老师为同学们整理了七年级数学上学期期中考试试题,具体内容请看下文。
一、选择题(本大题共有6小题,每小题 3分,共18分)1. 下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是(▲)A.3cm,4cm,7cmB.3cm,4cm,6cmC.5cm,4cm,10cmD.5cm,3cm,8cm2.下列计算正确的是(▲)A.(a3)4=a7B.a8a4=a2C.(2a2)3a3=8a9D.4a5-2a5=23.下列式子能应用平方差公式计算的是( ▲)A.(x-1)(y+1)B.(x-y)(x-y)C.(-y-x)(-y-x)D.(x2+1)(1- x2)4.下列从左到右的变形属于因式分解的是(▲)A.x2 2xy+y2=x(x-2y)+y2B.x2-16y2=(x+8y)(x-8y)C.x2+xy+y2=(x+y)2D. x4y4-1=(x2y2+1)(xy+1)(xy-1)5. 在△ABC中,已知B:C=2:3:4,则这个三角形是( ▲ )A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.某校七(2)班42名同学为希望工程捐款,共捐款320元,捐款情况如下表:捐款(元)46810人数67表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有名同学,捐款8元的有名同学,根据题意,可得方程组(▲)A. B. C. D.二、填空题 (本大题共有10小题,每小题3分,共30分)7.( ▲ )3=8m6.8.已知方程5x-y=7,用含x的代数式表示y,y= ▲ .9. 用小数表示2.01410-3是▲ .10.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是▲ .11.若 x2+mx+9是完全平方式,则m的值是▲ .12. 若,则的值是▲ .13.若一个多边形内角和等于1260,则该多边形边数是 .14.已知三角形的两边长分别为10和2,第三边的数值是偶数,则第三边长为▲ .15.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是▲ .16.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好 (即不多不少)能容纳这60名灾民,则不同的搭建方案有▲ 种.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)(1)计算:(2)先化简,再求值:,其中y= .18.(本题满分8分)(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数. (第18(1)题图) 19.(本题满分8分)因式分解:(1) ; (2) .20.(本题满分8分)如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,BAC=66,BCE=40,求ADC和APC的度数.21.(本题满分10分)解方程组:(1) (2)22.(本题满分10分)化简:(1)(-2x2 y)2(- xy)-(-x3)3x4(2)(a2+3)(a-2)-a(a2-2a-2).23.(本题满分10分)(1)设a-b=4,a2+b2=10,求(a+b)2的值;(2)观察下列式子:13+1=4,24+1=9,35+1=16,46+1=25,,探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.24.(本题满分10分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.25.(本题满分12分)种粮补贴惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:乙:根据甲、乙两位同学所列的方程组,请你分别指出未知数x,y表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x表示▲ ,y表示▲乙:x表示▲ ,y表示▲(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)26.(本题满分14分)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果A=70,求BPC的度数;(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M 和N,试求MPB+NPC的度数(用含A的代数式表示);(3)在(2)的条件下,将直线MN绕点P旋转.(i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索MPB、NPC、A三者之间的数量关系,并说明你的理由;(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中MPB、NPC、A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出MPB、NPC、A三者之间的数量关系,并说明你的理由. 七年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分)二、填空题(本大题共有10小题,每小题3分,共30分)7.2m2;8.5x-7;9.0.002018;10.-2;11.12.9;13.9;14.10;15 .1516. 6.三、解答题(共10题,102分.下列答案仅供参考,有其它答案或解法,参照标准给分.)-4a(4a2-4ab+b2)(2分)=-4a(2a-b)2(2分).20.(本题满分8分)∵AD是△ABC的角平分线,BAC=66,BAD=CAD= BAC=33∵CE是△ABC的高,BEC=90∵BCE=40,B=50(1分),BCA=64(1分),ADC=83(2分),APC=12 3(2分). (可以用外角和定理求解)21.(本题满分10分)(1)①代入②有,2(1-y)+4y=5(1分),y=1.5 (2分),把 y=1.5代入①,得x=-0.5(1分), (1分);(2)②3-①5得: 11x=-55(2分),x=-5(1分).将x=-5代入①,得y=-6(1分), (1分)22.(本题满分10分)(1)原式=4x4 y2(- xy)-(-x9)x4y3(2分)=- x5y3+x5y3(2分)=- x5y3(1分);(2)原式=a3-2a2+3a-6-a3+2a2+2a(4分)=5a-6( 1分).25.(本题满分12分)(1)甲:乙: (4分,各1分);甲:x 表示该专业户去年实际生产小麦吨数,y表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(4分,各1分)(2)略.(4分,其中求出方程组的解3分,答1分,不写出设未知数的扣1分).26. (本题满分14分)(1)125(2)利用平行线的性质求解或先说明BPC=90A,MPB+NPC=180BPC=180-(90A)=90A(3分);(3)(每小题4分)(i)MPB+NPC= 90A(2分).理由:先说明BPC=90A,则MPB+NPC=180BPC=180-(90A)= 90A(2分);(ii)不成立(1分),MPB-NPC=90A(1分).理由:由图可知MPB+BPC-NPC=180,由(i)知:BPC=90A,MPB-NPC=180BPC=180-(90A)= 90A(2分).这篇七年级数学上学期期中考试试题的内容,希望会对各位同学带来很大的帮助。
2017-2018学年山东省聊城市高唐二中七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)在﹣2,0,1,﹣4.这四个数中,最大的数是()A.﹣4 B.﹣2 C.0 D.12.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交3.(3分)已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm4.(3分)如果线段AB=12cm,MA+MB=16cm,那么下列说法正确的是()A.点M在线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外5.(3分)(﹣4)3与﹣43()A.互为相反数B.倒数C.相等D.它们的和为﹣24.6.(3分)下列结论中,正确的是()A.0比一切负数都大B.在整数中,1最小C.若有理数a,b满足a>b,则a一定是正数,b一定是负数D.0是最小的整数7.(3分)比﹣3.2大的负整数有()A.1个 B.2个 C.3个 D.4个8.(3分)下列说法错误的是()A.没有最大的正数,却有最大的负整数B.数轴上离原点越远,表示数越大C.0小于一切正数D.正数大于一切负数9.(3分)在1,﹣1,﹣2这三个数中,任意两个数之和的最大值是()A.﹣3 B.﹣1 C.0 D.210.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣311.(3分)若|x﹣3|+|y﹣2|=0,则|x|+|y|的值是()A.5 B.1 C.2 D.012.(3分)若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数二、填空题、(3×5=15)13.(3分)如果盈利200元记作+200元,那么亏损100元记作.14.(3分)绝对值小于3的所有整数的和是.15.(3分)的绝对值是,﹣2的相反数是.16.(3分)|a|=3,则a=.17.(3分)﹣12017+(﹣1)2018=.三、解答题18.(20分)计算:(1)(+23)+(﹣17)+(+6)+(﹣22)(2)12017﹣(1﹣0.5)×(3)﹣3×(﹣)2(4)(﹣32)÷(﹣2)3×3.19.(7分)在数轴上表示下列各数,并用“<”号把它们连接起来.0.5,﹣4,﹣2.5,2,0,﹣0.5.20.(6分)将下列各数填在相应的大括号里:1,﹣5,,﹣4.2,0,,10,﹣,整数:{ …}非负整数:{ …}分数:{ …}负分数:{ …}有理数:{ …}非负有理数:{ …}.21.(6分)已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.22.(10分)一只小蜗牛从某点0出发在一直线上来回爬行,规定向右为正,爬行的各段路程依次为(单位:cm):+5,﹣3,+10,﹣8,﹣6,+12,﹣10请探求下列问题:小蜗牛最后在哪里?小蜗牛离开出发点0最远是多远?23.(10分)如图,已知点C是线段AB的中点,点D是线段AC的中点,点E 是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.24.(10分)观察下面的变形规律:=1﹣,=;=;…解答下列问题:(1)若n为正整数,请你猜测=.(2)求和:+…+.2017-2018学年山东省聊城市高唐二中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)在﹣2,0,1,﹣4.这四个数中,最大的数是()A.﹣4 B.﹣2 C.0 D.1【解答】解:在﹣2,0,1,﹣4.这四个数中,大小顺序为:﹣4<﹣2<0<1,所以最大的数是1.故选:D.2.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.3.(3分)已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm【解答】解:(1)点B在A、C之间时,AC=AB+BC=3+1=4cm;(2)点C在A、B之间时,AC=AB﹣BC=3﹣1=2cm.所以A、C两点间的距离是4cm或2cm.故选:C.4.(3分)如果线段AB=12cm,MA+MB=16cm,那么下列说法正确的是()A.点M在线段AB上B.点M在直线AB上C.点M在直线AB外D.点M在直线AB上,也可能在直线AB外【解答】解:A、当点M在线段AB上时,AM+MB=AB=12cm,故本选项错误;B、如图,AM+BM=16cm,点M在直线AB外,故本选项错误;C、如图当BM=2cm,时,AM+BM=16cm,即M在直线AB上,故本选项错误;D、根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故本选项正确;故选:D.5.(3分)(﹣4)3与﹣43()A.互为相反数B.倒数C.相等D.它们的和为﹣24.【解答】解:(﹣4)3=﹣43=﹣64,故选:C.6.(3分)下列结论中,正确的是()A.0比一切负数都大B.在整数中,1最小C.若有理数a,b满足a>b,则a一定是正数,b一定是负数D.0是最小的整数【解答】解:A、0比一切负数都大,故本选项正确;B、在正整数中,1最小,故本选项错误;C、若有理数a,b满足a>b,无法确定有理数a,b的正负,故本选项错误;D、0是最小的自然数,故本选项错误;故选:A.7.(3分)比﹣3.2大的负整数有()A.1个 B.2个 C.3个 D.4个【解答】解:如图所示,由图可知,比﹣3.2大的负整数有:﹣3,﹣2,﹣1共3个.故选:C.8.(3分)下列说法错误的是()A.没有最大的正数,却有最大的负整数B.数轴上离原点越远,表示数越大C.0小于一切正数D.正数大于一切负数【解答】解:数轴上离远点越远,表示的数的绝对值越大,故B错误;故选:B.9.(3分)在1,﹣1,﹣2这三个数中,任意两个数之和的最大值是()A.﹣3 B.﹣1 C.0 D.2【解答】解:1+(﹣1)=0.故选:C.10.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选:A.11.(3分)若|x﹣3|+|y﹣2|=0,则|x|+|y|的值是()A.5 B.1 C.2 D.0【解答】解:由题意得,x﹣3=0,y﹣2=0,解得,x=3,y=2,则|x|+|y|=5,故选:A.12.(3分)若两个数的商为﹣1,则这两个数()A.都是1 B.都是﹣1C.一个是正数,一个是负数D.是一对非零相反数【解答】解:两个数的商为﹣1,则这两个数,符号相反,且绝对值相同,∴是一对非零相反数.故选:D.二、填空题、(3×5=15)13.(3分)如果盈利200元记作+200元,那么亏损100元记作﹣100元.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损100元记作﹣100元.故答案为﹣100元.14.(3分)绝对值小于3的所有整数的和是0.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.15.(3分)的绝对值是,﹣2的相反数是2.【解答】解:的绝对值是,﹣2的相反数是:2.故答案为:,2.16.(3分)|a|=3,则a=±3.【解答】解:∵|a|=3,∴a=±3.故答案为:±3.17.(3分)﹣12017+(﹣1)2018=0.【解答】解:原式=﹣1+1=0,故答案为:0三、解答题18.(20分)计算:(1)(+23)+(﹣17)+(+6)+(﹣22)(2)12017﹣(1﹣0.5)×(3)﹣3×(﹣)2(4)(﹣32)÷(﹣2)3×3.【解答】解:(1)原式=[(+23)+(+6)]+[(﹣17)+(﹣22)]=(+29)+(﹣39)=﹣10;(2)原式=﹣1﹣=﹣;(3)原式=﹣3×=﹣;(4)原式=(﹣32)÷(﹣8)×=4×=15.19.(7分)在数轴上表示下列各数,并用“<”号把它们连接起来.0.5,﹣4,﹣2.5,2,0,﹣0.5.【解答】解:如图所示:则﹣4<﹣2.5<﹣0.5<0<0.5<2.20.(6分)将下列各数填在相应的大括号里:1,﹣5,,﹣4.2,0,,10,﹣,整数:{ 1,﹣5,0,10…}非负整数:{ 1,0,10…}分数:{ ,﹣4.2,,﹣…}负分数:{ ﹣4.2,﹣…}有理数:{ 1,﹣5,,﹣4.2,0,,10,﹣…}非负有理数:{ 1,,0,,10…}.【解答】解:整数:{1,﹣5,0,10,…}非负整数:{1,0,10,…}分数:{,﹣4.2,,﹣…}负分数:{﹣4.2,﹣…}有理数:{1,﹣5,,﹣4.2,0,,10,﹣…}非负有理数:{1,,0,,10,…},故答案为:1,﹣5,0,10;1,0,10;,﹣4.2,,﹣;﹣4.2,﹣;1,﹣5,,﹣4.2,0,,10,﹣;1,,0,,10.21.(6分)已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【解答】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.22.(10分)一只小蜗牛从某点0出发在一直线上来回爬行,规定向右为正,爬行的各段路程依次为(单位:cm):+5,﹣3,+10,﹣8,﹣6,+12,﹣10请探求下列问题:小蜗牛最后在哪里?小蜗牛离开出发点0最远是多远?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=0,所以小蜗牛最后在出发点0;(2)│+5│=5,│(+5)+(﹣3)│=2,|(+5)+(﹣3)+(+10)│=12,│(+5)+(﹣3)+(+10)+(﹣8)│=4,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)│=2,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)│=10,│(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)│=0.所以小蜗牛离开出发点0最远是12cm.23.(10分)如图,已知点C是线段AB的中点,点D是线段AC的中点,点E 是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.【解答】解:(1)因为点D是线段AC的中点,点E是线段BC的中点,所以AC=2CD,BC=2CE,所以AB=AC+BC=2(DC+CE)=2DE=18cm;(2)因为点E是线段BC的中点,所以BC=2CE=10cm.因为点C是线段AB的中点,点D是线段AC的中点,所以DC=AC=BC=5cm,所以DB=DC+CB=5+10=15cm.24.(10分)观察下面的变形规律:=1﹣,=;=;…解答下列问题:(1)若n为正整数,请你猜测=﹣.(2)求和:+…+.【解答】解:(1)=﹣;故答案为:﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。