三视图习题课
- 格式:ppt
- 大小:870.00 KB
- 文档页数:15
29.2三视图第1课时1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.阅读教材P108-110,弄清楚视图、主视图、俯视图、左视图的概念,以及画三视图时的位置和视图之间的大小关系.自学反馈独立完成后展示学习成果①当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个_______,也可以看作物体在某一角度的光线下的_________.②主视图是在正面内得到的由______向_______观察物体的视图;俯视图是在水平面内得到的由_______向________观察物体的视图;左视图是在侧面内得到的由_______向________观察物体的视图.③主视图与俯视图的____对正,主视图与左视图的_____平齐,左视图与俯视图的宽______.④三视图一般规定主视图要在______,俯视图在______,左视图在_______,其中主视图反映物体的____和____,左视图反映物体的____和____,俯视图反映物体的____和____.活动1小组讨论例1画出如图所示一些基本几何体的三视图.解:教师点拨:画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法为:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.活动2跟踪训练(独立完成后展示学习成果)1.主视图、俯视图、左视图分别反映物体哪些长度特征?教师点拨:可根据画三视图的依据来得出此题结论.2.教材P112页练习题第1题.3.画出半球和圆锥的三视图.教师点拨:要注意三视图的位置和视图之间的大小关系.活动1小组讨论例2画出如图所示的支架(一种小零件)的三视图,支架的两个台阶的高度和宽度都是同一长度.解:如图是支架的三视图.教师点拨:对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上下、前后、左右位置关系.活动2跟踪训练(小组讨论完成后展示学习成果)1.一个几何体的主视图、俯视图、左视图都是正方形,那么这个几何体可能是________.2.下列图中能表示一个圆台的主视图的是()1.如图是一个圆台,它的三视图在(1)、(2)、(3)中,其中(1)是______,(2)是_______,(3)是_______.活动1小组讨论例3如图是一根钢管的直观图,画出它的三视图.解:如图是钢管的三视图,其中之一的虚线表示钢管的内壁.教师点拨:钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.活动2跟踪训练(小组讨论完成后展示学习成果)如图中的立体图形可以看成由哪些基本几何体经过怎样的变化得到的?画出它的三视图.教师点拨:画三视图时,一要注意三个视图的位置摆放,二要做到“长对正”、“高平齐”、“宽相等”,三要注意虚线与实线的区别:看得见的部分画实线,看不见的轮廓线画虚线.画复杂几何体的三视图时,把复杂几何体分解为简单几何体的组合,从而将复杂的问题转化为已知的简单的问题.活动3课堂小结学生试述:这节课你学到了些什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①视图投影②前后上下左右③长高相等④左上边主视图下方主视图的右边长高高宽长宽【合作探究1】活动2跟踪训练1.主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽2.略3.略【合作探究2】活动2跟踪训练1.正方体2.C3.主视图或左视图,俯视图,左视图或主视图【合作探究3】活动2跟踪训练圆柱中挖出一个长方体得到的图略第2课时进一步明确三视图的意义,由三视图想象出实物原型.自学反馈独立完成后展示学习成果①由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形_____面、______面、______面,然后再结合起来考虑整体图形.②一个立体图形的俯视图是圆,则这个图形可能是__________.③下列几何体中,其主视图、左视图与俯视图均相同的是()A.正方体B.三棱柱C.圆柱D.圆锥④一个立体图形的三视图是一个正方形和两个长方形,则这个图形是()A.正方体B.长方体C.四面体D.四棱锥教师点拨:像这类给出选项的选择题可以根据选项反推理,从而得出答案.活动1小组讨论例1根据三视图说出立体图形的名称.解:图1从三个方向看立体图形都是矩形,可以想象出:整体是长方体.图2从正面和侧面看立体图形,图象都是等腰三角形,从上面看,图象是圆,可以想象出:整体是圆锥体.如图所示.教师点拨:由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.活动2跟踪训练(独立完成后展示学习成果)1.仅由三视图中的一个视图或者两个视图能确定几何体吗?教师点拨:已知三视图中的一部分视图不能确定几何体的形状,只有三视图全部已知,才能根据三视图想象出几何体(实物).2.如图,三视图所表示的物体是______.3.由下列三视图想象出实物形状.4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是_____个.5.如图,下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同另一个不同的几何体是________.6.由三视图想象出实物形状.活动1小组讨论例2已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.教师点拨:有些三视图反映的是两个或多个基本几何体,我们可以从三视图中分解出各个基本几何体的三视图,先想象出各个基本几何体,再根据它们三视图的位置关系确定这些基本几何体的组合关系.活动2跟踪训练(小组讨论完成后展示学习成果)由下面的三视图想象出实物的形状.教师点拨:视图中的虚线是被遮挡的物体的轮廓线,要根据其在视图中的位置去想象它在对应的实物中的形状和位置.活动3课堂小结学生试述:这节课你你到了些什么?教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①前上侧②球体③A④B【合作探究1】活动2跟踪训练1.不能确定2.五棱锥3.A是四棱锥B是球体C是三棱柱子4.85.BC6.略【合作探究2】活动2跟踪训练略第3课时能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.阅读教材P114-115,学会根据三视图确定几何体的形状,并会求其体积问题,解决实际问题.自学反馈 独立完成后展示学习成果①圆锥沿它的一条母线剪开的侧面展开图是_________.②圆柱沿它的一条母线剪开的侧面展开图是_________.③正方体、长方体的六个面展开平面图的面积它的表面积______.(填“大于”、“等于”或“小于”)活动1 小组讨论例 已知某混凝土管道的三视图设计者已经给出某混凝土管道的三视图,请你按照三视图确定浇灌每段这种管道所需混凝土的方数.(π≈3.14)解:所求管道的体积等于外部大圆柱的体积减去内部空心部分圆柱体的体积,于是所求体积为V=π×(20.10.80.1++)2×3-π×(20.8)×3=0.27π=0.8478(m 3).答:浇灌每段这种管道所需混凝土为0.8478m 3.教师点拨:在实际生活中经常遇到与本题类似的问题,设计人员只供给图纸上的图形和数据,要把它还原成立体实物,再根据它的展开图求出相应的量.活动2 跟踪训练(独立完成后展示学习成果)1.根据图1、图2几何体的三视图画出它的平面展开图?2.由如图3所示的三视图,求该物体的表面积.教师点拨:先确定其几何体的实物形状,再画出它的平面展开图.3.如图,以Rt △ABC 的直角边AC 所在直线为轴,将Rt △ABC 旋转一周,所形成的几何体的俯视图是( )4.如图4所示的平面图形,可以制成的立体图形是______.5.如图5是一个包装盒的三视图,则这个包装盒的体积是多少?6.如图是一粮仓,其顶部是一圆锥,底部是圆柱.①画出粮仓的三视图;②若圆柱的底面圆的半径为1米,高为2米,求圆柱的侧面积;③假设粮食最多只能装至圆柱同样高,则最多可以存放多少立方米的粮食?7.如图是一个几何体的主视图和俯视图,求该几何体的体积.(π取3.14)活动3课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①扇形②矩形③等于【合作探究】活动2跟踪训练1.略2.1500+20033.A4.圆锥体5.2883cm36.①略②4π米2③2π米37.40048cm3。
组合体三视图练习题一、选择题(每题5分,共20分)1. 下列哪一项不是组合体三视图的基本视图?A. 正视图B. 侧视图C. 俯视图D. 斜视图2. 在组合体三视图中,以下哪个视图可以提供物体的宽度信息?A. 正视图B. 侧视图C. 俯视图D. 斜视图3. 组合体三视图的绘制顺序通常是:A. 俯视图、侧视图、正视图B. 正视图、侧视图、俯视图C. 侧视图、俯视图、正视图D. 任意顺序4. 如果一个组合体的正视图和侧视图都是矩形,那么该组合体可能是:A. 圆柱B. 长方体C. 圆锥D. 球体二、填空题(每空5分,共30分)5. 组合体三视图包括______、______和______。
6. 当组合体中包含对称面时,绘制______视图即可。
7. 在组合体三视图中,______视图通常用来表示物体的高度。
8. 如果组合体的______视图和______视图相同,说明该物体具有对称性。
9. 组合体三视图的绘制原则是______、______和______。
10. 组合体三视图中,______视图可以提供物体的厚度信息。
三、简答题(每题20分,共40分)11. 简述组合体三视图的作用及其重要性。
12. 描述在绘制组合体三视图时,如何确定视图的尺寸比例。
四、绘图题(每题10分,共10分)13. 根据所给的组合体三视图,绘制其立体图。
[注:本题需要根据实际的组合体三视图来绘制立体图,此处无法提供具体图形,需要考生根据实际题目情况作答。
]五、综合分析题(每题10分,共10分)14. 假设你是一名机械设计师,需要根据客户提供的组合体三视图来设计一个机械部件。
请分析在设计过程中,三视图提供了哪些关键信息,以及这些信息如何帮助你完成设计。
[注:本题需要考生结合实际情况和专业知识进行分析,此处无法提供具体答案。
]请注意,以上题目仅为示例,实际试卷练习题应根据具体教学大纲和课程要求来设计。
5.2 视 图第1课时 简单图形的三视图1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()解析:俯视图是从上往下看,B 选项是它的俯视图.答案:B2.如图,是由四个相同的小正方体组成的立体图形,它的俯视图是( ) 【答案】C3.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【答案】C【关键词】三视图4.如图所示的几何体的俯视图是( ).A .B .C .D . 【关键词】俯视图:从上往下看 【答案】B5.一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D . 第2题图第2题图A .B .C .D . 【关键词】三视图、三棱柱 【答案】A6.已知一个几何体的三视图如图所示,则该几何体是( )A .棱柱B .圆柱C .圆锥D .球 【关键词】三视图 【答案】B7.下图所示几何体的主视图是( )A .B .C .D .【关键词】三视图 【答案】A8.沿圆柱体上面直径截去一部分的物体如图所示,它的俯视图是( )A B C D【关键词】视图 【答案】D9.若右图是某几何体的三视图,则这个几何体是( )A .三棱柱B .圆柱C .正方体D .三棱锥 【关键词】三视图 【答案】A10.一个几何体的三视图如右图所示,这个几何体是A .圆锥B .圆柱C .三棱锥D .三棱柱【关键词】三视图 【答案】D 正面 (第3题)俯视图左 视 图主 视 图第4题图11.图,水平放置的下列几何体,主视图不是..长方形的是 ( )【关键词】 【答案】B12.如图是某几何体的三视图及相关数据,则该几何体的侧面积是(A )πab 21 (B )πac 21(C )πab (D )πac【关键词】三视图、侧面积 【答案】B13.长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A .52B .32C .24D .9主视图 俯视图 【关键词】三视图 【答案】C14.如图(1)放置的一个圆柱,则它的左视图是 ( )2A. B. C. D.主视图 左视图 俯视图 图(2)DC B A图(1)15、如图(1)所示的是由6个大小相同的正方形组成的几何体,它的俯视图是如图(2)所示的( )16、如图(1)所示的是圆台形灯罩的示意图,它的俯视图是如图(2)所示的( )17、主视图、左视图和俯视图完全相同的几何体是如图所示( )18.在水平的讲台上放置圆柱形水杯和长方形粉笔盒,如图(1)所示,则它的主视图是图(2)所示的( ) 图(1)图(2)DCBA图(2)DCBA图(1)DCBADCBA19.如图(1)所示,放置的一个水管三叉接头,若其主视图如图(2)所示,则其俯视图是图(3)所示的( )20.如图所示的四个几何体中,主视图与其他几何体的主视图不同的是( )21、如图所示是某一几何体的三视图,则这个几何体是( ) A 、圆柱体 B 、圆锥体 C 、正方体 D 、球体图(2)图(1)图(3)DCBADCBA俯视图左视图主视图22、如图所示的某个几何体的三视图,则该几何体是( )A 、长方体B 、三棱锥C 、圆柱D 、圆台23.在一个仓库里堆放若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图所示,则这堆货箱共有( )A 、6个B 、5个C 、4个D 、3个24、由若干个相同的小正方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )A 、3B 、4C 、5D 、6俯视图左视图主视图俯视图左视图主视图 CBA俯视图左视图主视图成功名言警句:2、对我来说,不学习,毋宁死。
§29.2三视图习题课教学设计一、课标要求课标对本节课的要求是:“能判断简单物体的视图,并会根据视图描述简单的几何体.”学习内容是判断简单物体的视图,及根据视图描述简单的几何体,学习主体是学生,行为动词是“能、会”,教学后要求达到的水平是掌握判断简单物体的视图、理解根据视图描述简单的几何体的方法,其维度目标是一条结果目标.2、教材分析本节课简单的物体主要是一些由小正方体搭成的实物,难度不太大。
另外三视图是本地区中考的考点之一,它主要涉及两种类型题:给实物图判断视图,给视图判断出实物图.3、学情分析优点:分析能力强、探究热情高缺点:观察视图能力和动手撘一搭实物的能力较弱.四、教学目标及重点、难点二、第一遍作业题讲评——生生交流环节1.【教师公布答案.】环节2.【学生以小组为单位进行交流】三、第二遍作业题讲评——师生交流环节1.【教师强调易错点——第2题】2.图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()。
环节2. 【学生讲评,教师引导归纳第5题】5.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体教师引导学生了解三视图这一考点的动向.教师将批改完的作业题发回学生手中.学生小组合作交流教师:请同学们说一说想跟老师交流哪些题?学生:第2、5、6、7、8题教师:第2题请同学们要注意对异形的部分进行单独判断.教师:哪位同学能来给大家讲评一下第5题?激趣导学,学生发现三视图在实际生活中的广泛应用,顺利成章的过渡到对本课的探究.的小正方体有________个。
环节3.【“俯视图 + 数字→实物”再应用——第6题】6.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是_______个.环节4. 【只给主视图和左视图选判断实物——第7、8题】7.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方学生讲评第5题教师引导学生归纳方法:俯视图 + 数字→实物教师:哪位同学能来给大家讲评一下第6题?两名学生分别用不同的方法讲评第6题其中一种示意图:最少:教师:第6题如果改为求最多你还会吗?学生得出结论:9个这是本节课的难点,因此这两道题先让学生撘一搭.通过生生之间、师生之间的交流后得出这样一种给俯视图标数字的方法,学生依据它能快速的在头脑中想象出物体的形状,从而顺利解决问题,省时,省力,而且准确度高,从而很好的达成了我的教学重点。
第二十九章投影与视图29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,到B处发现影子刚好落在A点,则灯泡与地则灯泡与地面的距离CD =_______.4、圆柱的左视图是,俯视图是;5、如图,一几何体的三视图如右:那么这个几何体是;主视图左视图俯视图二、基础训练:1、填空题(1)俯视图为圆的几何体是,.(2)画视图时,看得见的轮廓线通常画成,看不见的部分通常画成. (3)举两个左视图是三角形的物体例子:,.(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有()个碟子.2、有一实物如图,那么它的主视图()AB C D 3、下图中几何体的主视图是(). 俯视图主视图左视图主视图左视图俯视图俯视图主(正)视图左视图(A) (B) (C ) (D)4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有(有( ) (A )5桶 (B ) 6桶(C )9桶 (D )12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是方体的前面,则这个正方体的后面是 ( ) ( )A .OB O B.. 6C 6 C.快.快.快D D D.乐.乐.乐三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是(.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是(的小立方块的个数是( )A 5个B 6个C 7个D 8个3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4、下面是空心圆柱在指定方向上的视图,正确的是…(、下面是空心圆柱在指定方向上的视图,正确的是…( )B AC D正面 A B C D (A) (B) (C) (D)5、画出下面实物的三视图:实物的三视图:第二十九章 投影与视图29.2 三视图三视图 参考答案:考答案: 课前小测:课前小测:1、短、短2、35723、15644、矩形,圆、矩形,圆5、空心圆柱、空心圆柱 二、基础训练:二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A ;3、C4、B5、B三、综合训练:三、综合训练:1、C2、D3、B ;4、A ;5、题图:图:主视图左视图俯视图。
画三视图练习题1.下面是一些立体图形的三视图,?请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.画出该几何体的左视图;该几何体是几面体?它有多少条棱?多少个顶点?该几何体的表面有哪些你熟悉的平面图形?9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.马小虎准备制作一个封闭的正方体盒子,他先用5?个大小一样的正方形制成如图所示的拼接图形,经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,?使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.14.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.参考答案:1.圆柱,正三棱锥.圆锥圆柱正方体三棱柱3.上正侧.B .略6.如粉笔,灯罩等.1208.略六面体,12条,8个等腰梯形,?正方形9.长方体木板的正前方放置了一个圆柱体 10.略 11.不存在12.x=1或x=2,y= 13.略 14.12个,7个1.1.5三视图课程学习目标[课程目标]目标重点:正投影与三视图的画法与应用, 目标难点:三视图的画法以及应用学法关键1.画三视图时,可以把垂直投影面的视线想象成平行光线从不同的方向射向几何体,体会可见的轮廓线的投影就是所要画出的视图,画出的三视图要检验是否符合.长对正、高平齐、宽相等.的基本特征.2.由三视图想象几何体时也要根据.长对正、高平齐、宽相等.的基本特征,想象视图中每部分对应的实物的形象,特别注意几何体中与投影面垂直或平行的线及面的位置研习教材重难点研习点1 正投影1.定义:在物体的平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.. 正投影的性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比;⑥垂直于投影面的直线或线段的正投影是点;⑦垂直于投影面的平面图形的正投影是直线或直线的一部分.研习点三视图1. 水平投射面:一个投射面水平放置,叫做水平投射面.. 俯视图:投射到水平投射面内的图形叫做俯视图.3. 直立投射面:一个投射面放置在正前方,这个投射面叫做直立投射面.. 主视图:投射到直立投射面内的图形叫做主视图.5. 侧立投射面:和直立、水平两个投射面都垂直的投射面叫做侧立投射面.. 左视图:投射到侧立投射面内的图形叫做左视图.7. 三视图:将空间图形向水平投射面、直立投射面、侧立投射面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.研习点3.三视图的画法要求:三视图的主视图、俯视图、左视图分别是人从物体的正前方、正上方、正左方看到的物体轮廓线的正投影组成的平面图形;一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样;记忆口诀:长对正,高平齐,宽相等;主左一样高,主俯一样长,俯、左一样宽。
第25章投影与视图25.2 三视图第2课时棱柱的三视图教学反思教学目标1.了解棱柱的有关概念,进一步提高空间想象能力.2.画含有看不见棱的几何体的三视图.3.由三视图想象出立体图形后能进行简单的面积或体积的计算.教学重难点重点:棱柱的有关概念及其三视图.难点:由三视图想象出立体图形后能进行简单的面积或体积的计算.教学过程导入新课问题:小明学习了三视图的画法后,画出了一个几何体的三视图,如图所示.你能想象这个这个几何体的形状吗?师生活动:学生观察图片,思考,并进行口答.师生活动:学生思考,讨论,交流,教师引出本节课的课题.探究新知合作探究1.棱柱的定义相对的两个面是平行且全等的多边形的多面体叫做棱柱.侧棱与底面垂直的棱柱称为直棱柱.侧棱与底面不垂直的棱柱称为斜棱柱.底面是正多边形的直棱柱称为正棱柱.棱柱的底面是几边形,就称这个棱柱是几棱柱.2.棱柱的分类棱柱是按照什么特征进行分类的?例1 根据物体的三视图,描述物体的形状.【分析】由主视图可知,物体的正面是正五边形;由俯视图可知,由上向下看到物体有两个面的视图是矩形,它们的交线是一条棱(中间的实线表示),可见到,另有两条棱(虚线表示)被遮挡;由左视图可知,物体左侧有两个面是矩形,它们的交线是一条棱(中间的实线表示),可见到.综合各视图可知,物体的形状是正五棱柱.【归纳总结】虑整体图形.3.三视图的有关计算例2 按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:师生活动:的侧面展开图,然后进行面积的计算.【解】由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm ,底面正六边形的直径为如图,是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin 60°=6×502×1⎛ ⎝≈27 990(mm 2).教学反思【归纳总结】1.三种图形的转化:.↔↔三视图立体图展开图2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高. (2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分. (3) 最后根据已知数据,求出展开图的面积.【新知应用】例3 如图是一个几何体的三视图,根据所标数据,求该几何体的表面 积和体积.师生活动:学生根据求立体图形面积的方法,独立解决,并展示.教师根据学生展示情况进行讲解:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们的表面积和体积,然后相加即可.【解】该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm 2),体积为25×30×40+102×32π=(30 000+3 200π)(cm 3).课堂练习1.( )第1题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱2. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )教学反思第2 A. 6B. 8C. 12D. 24 3. 一个物体的俯视图是圆,则该物体有可能是_______.4. 在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.箱.第4题图5. 如图是一个由若干个棱长为1 cm 的正方体构成的几何体的三视图. (1) 请写出构成这个几何体的正方体的个数为_______; (2) 计算这个几何体的表面积为_______.第5题图6. (1) 一个几何体的主视图和左视图如图所示,请补画这个几何体的俯视图.第6(2) 一个直棱柱的主视图和俯视图如图所示.描述这个直棱柱的形状,并补画它的左视图.第6题图(2)教学反思7.如图是一个几何体的三视图,试描述这个零件的形状,并求出此三视第7题图参考答案1.D2.B3.圆柱,球4.95.(1)5 (2)20 cm 26.解:(1第6题答图(1)(2第6题答图(2)7.解:由三视图知该几何体是一个组合体,上面是一个圆锥,下面是一个圆柱.该几何体的表面积为π×22+2π×2×2+π×2×4=20 π.课堂小结学生先自主回顾本节课所学主要内容,然后师生共同总结.布置作业教材第89页复习题B 组1~2题板书设计25.2 三视图 第2课时 棱柱的三视图教学反思2.三视图的有关计算教学反思(1)三种图形的转化:三视图立体图展开图.(2)由三视图求立体图形的面积的方法:①先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.②将立体图形展开成一个平面图形(展开图),观察它的组成部分.③最后根据已知数据,求出展开图的面积.。