第9讲 综合传热计算
- 格式:ppt
- 大小:3.19 MB
- 文档页数:26
传热与传质最全的计算一、传热传热是能量从一个物体或系统传递到另一个物体或系统的过程。
根据传热方式的不同,传热可以分为三种形式:传导、对流和辐射。
1.传导:传热的方式通过物质的直接接触和分子的碰撞来进行。
传导传热的计算主要依靠温度差、传热面积和传热材料的热导率来计算。
传导传热的计算公式为:Q=-k*A*(ΔT/d)其中Q表示传热的热量,k表示热导率,A表示传热面积,ΔT表示温度差,d表示热传导长度。
2.对流:对流是通过流体(气体或液体)传递热量的过程。
对流传热的计算需要考虑传热系数、传热面积和温度差。
对于自然对流,传热系数可以通过科里奥利数来估算。
对于强制对流,传热系数可以通过雷诺数和普朗特数来估算。
对流传热的计算公式为:Q=h*A*ΔT其中Q表示传热的热量,h表示传热系数,A表示传热面积,ΔT表示温度差。
3.辐射:辐射是通过电磁辐射传递热量的过程。
辐射传热的计算需要考虑黑体辐射能量和辐射系数。
辐射传热的计算公式为:Q=ε*σ*A*(T1^4-T2^4)其中Q表示传热的热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示传热面积,T1和T2表示两个物体的温度。
二、传质传质是物质在空间中通过扩散机制传递的过程。
传质过程主要包括质量传递和扩散传递。
1.质量传递:质量传递是涉及物质从一个相向另一个相传递的过程。
质量传递的计算需要考虑浓度差、传质系数和表面积。
质量传递的计算公式为:Q=k*A*(C1-C2)其中Q表示传递的质量,k表示传质系数,A表示传质面积,C1和C2表示两个相之间的浓度差。
2.扩散传递:扩散传递是涉及物质通过浓度梯度向更低浓度的方向传递的过程。
扩散传递的计算需要考虑扩散系数、浓度梯度和距离。
扩散传递的计算公式为:J = -D * (dC / dx)其中J表示扩散通量,D表示扩散系数,C表示浓度,x表示距离。
以上是传热和传质的基本概念和常见的计算方法。
当然,实际的传热和传质过程常常是复杂和多变的,需要根据具体情况进行更为详细和精确的计算和分析。
热传递热量计算公式全文共四篇示例,供读者参考第一篇示例:热传递是热力学中非常重要的一个概念,热传递热量计算公式是用来计算热力系统中热量传递的过程中所涉及到的热量变化。
在工程和实际生活中,热传递计算是非常常见的,比如在设计暖气系统、空调系统、制冷系统等领域都需要进行热传递计算,以确保系统能够正常工作,并且达到设计要求。
热传递热量计算公式的形式有很多种,根据不同的情况和假设条件可以采用不同的计算方法。
但是在大多数情况下,我们可以使用如下的公式来计算热量的传递:q = hA\Delta Tq表示传递的热量,单位为热量单位(焦耳,卡路里等);h表示传热系数,单位为热传导系数(W/m2·K);A表示传热面积,单位为平方米;\Delta T表示传热过程中介质的温度差,单位为摄氏度。
这个公式简单易懂,但是需要注意的是,在实际应用中,我们需要根据具体的情况选择合适的传热系数和传热面积,并且需要考虑各种传热过程中可能存在的复杂性因素。
传热系数h是表示传热介质(比如空气、水等)的传热性能好坏的参数,传热系数越大,传热速度也就越快。
传热系数的大小会受到介质性质、流动状态、传热表面形状等因素的影响。
一般情况下,我们可以根据实验数据或者相关资料来确定传热系数的数值。
传热面积A是传热器或者传热器的传热表面的面积,一般来说,传热面积越大,传热效果也就越好。
在设计传热系统时,我们需要根据具体情况来确定传热面积。
传热温度差\Delta T是指传热过程中介质之间的温度差异。
传热过程中,温度差越大,热量传递的速度也就越快。
除了上述的简单传热公式,还有一些其他的传热计算公式,比如换热器的传热公式、复杂流体传热的计算公式等。
这些公式在实际应用中都有着重要的作用,可以帮助我们更好的理解和控制热传递过程。
热传递热量计算公式是热传递工程和热力学中非常重要的内容,它可以帮助我们更好的理解热传递过程,并且在实际应用中有着重要的作用。
希望大家可以通过学习和掌握这些重要的公式,更好的应用于工程实践中,为社会发展做出贡献。
热传递热量计算公式
热传递是指热量从一个物体传递到另一个物体的过程。
热传递的计算可以通过多种公式来实现,具体取决于热传递的方式。
以下是一些常见的热传递计算公式:
1. 热传导(导热)的计算公式:
热传导是指热量通过物质内部传递的过程。
其计算公式可以用傅立叶定律来表示:
Q = -kAΔT/Δx.
其中,Q表示传导热量,k表示热导率,A表示传热面积,ΔT表示温度差,Δx表示传热距离。
2. 热对流的计算公式:
热对流是指热量通过流体(气体或液体)对流传递的过程。
其计算公式可以用牛顿冷却定律来表示:
Q = hAΔT.
其中,Q表示对流热量,h表示对流换热系数,A表示传热面积,ΔT表示温度差。
3. 热辐射的计算公式:
热辐射是指热量通过辐射传递的过程。
其计算公式可以用斯特藩-玻尔兹曼定律来表示:
Q = εσA(T₁^4 T₂^4)。
其中,Q表示辐射热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示辐射面积,T₁和T₂分别表示两个物体的绝对温度。
以上是一些常见的热传递计算公式,它们分别适用于不同的热传递方式。
在实际问题中,需要根据具体情况选择合适的公式进行计算。
计算重点公式传热学传热学是研究热能在物质之间传递的学科,涵盖了热传导、热对流和热辐射三种传热方式。
在工程和科学领域中,计算传热是非常重要的,可以用来优化和设计各种热能设备和系统。
下面将介绍一些重要的传热计算公式。
1.热传导计算公式热传导是通过分子间的相互作用传递热能的方式。
对于常见的一维热传导问题,可以使用傅里叶热传导定律进行计算:q = -kA(dT/dx)其中,q是单位时间内通过物体的热量流率,k是物质的热导率,A 是传热截面积,dT/dx是温度梯度。
如果传热是在不同的材料之间进行,还需要考虑热传导的界面热阻。
界面热阻的计算公式为:R=1/(hA)其中,R是界面热阻,h是对流传热系数。
2.热对流计算公式热对流是通过流体的对流传递热能的方式。
对于流体中的对流传热,可以使用牛顿冷却定律进行计算:q=hAΔT其中,q是单位时间内通过物体的热量流率,h是对流传热系数,A 是传热表面积,ΔT是流体和物体之间的温度差。
对流传热系数h可以通过实验测量或者经验公式进行估算,常用的计算公式有Nusselt数和普朗特数。
3.热辐射计算公式热辐射是通过物体表面的电磁辐射传递热能的方式。
对于黑体辐射,可以使用斯特藩—玻尔兹曼定律进行计算:q=σAε(T^4)其中,q是单位时间内通过物体的热量流率,σ是斯特藩—玻尔兹曼常数,A是物体的表面积,ε是物体的辐射率,T是物体的温度。
对于非黑体的辐射传热,还需要考虑辐射率和视觉系数等因素。
4.综合传热计算在实际问题中,常常会有多种传热方式同时存在。
此时,需要将不同传热方式的热流量进行累加,得到总的传热量。
根据能量守恒定律,可以得到以下综合传热公式:q_total = q_conduction + q_convection + q_radiation其中,q_total是总的热量流率,q_conduction是热传导的热量流率,q_convection是热对流的热量流率,q_radiation是热辐射的热量流率。
第九章 传热过程分析和换热器计算在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析得出它们的计算公式。
由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。
因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。
9-1传热过程分析在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。
在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。
对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ∆=, 9-1式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2;t ∆为热流体与冷流体间的某个平均温差,o C ;k 为传热系数,W/(⋅2m o C)。
在数值上,传热系数等于冷、热流体间温差t ∆=1 o C 、传热面积A =1 m 2时的热流量值,是一个表征传热过程强烈程度的物理量。
在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。
对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。
这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。
下面我们来讨论一个典型的复合换热过程,即一个热表面在环境中的冷却过程,如图9-1所示。
传热计算传热计算分为两种:设计计算——据任务给定热负荷,确定换热器面积;校核计算——对已有换热器,计算其热负荷、或流体流量、或流体出口温度。
计算基础:热量衡算(即能量衡算)传热速率方程(多用无壁温的总方程)4-4-1能量衡算与推导柏式的能量衡算相比较,在换热器中,①器内无“外功”加入;②位能较小(∵换热器多横置,竖置时△Zmax≤6m),动能变化也较小(∵只有管程流体在分配头处才有些变化),∴一般忽略;③∵流阻转换的热量与热负荷相比很小,∴忽略。
换热器的能量衡算只考虑间壁两侧流体的“焓衡算”。
设换热器绝热,Q L=0;则单位时间内热流体放出的热量等于冷流体吸收的热量:W h(H h1-H h2)=W c(H c2-H c1)=Q(4-30)或(W△H)h=(W△H)c=Q其中的△H不外有下列三种基本形式:①无相变,c p=常数;△H h=c ph(t2-t1)或△H c=c pc(T1-T2)②有相变:△H=r③相变加温变:△H=r+c p△T(/△t)根据实际情况可能组合出许多热量衡算公式。
4-2-2总传热速率微分方程和总传热系数一、总传热速率微分方程∵稳定的间壁传热,流体的对流传热速率Q=间壁的导热速率Q。
∴计算时可任取某侧流体或间壁作为计算对象。
但是,计算式中都涉及壁温,它既难侧又难求取(试差)仿多层平壁,将同一横截面上的两侧流体分别“绝热混合”,它们的差值做为截面传热的中推力,即:式也可以写成:dQ=k(T-t)dS=k△tdS(3-34)对应不同的传热面有:dQ=K i(T-t)dS i=K m(T-t)dS m=K o(T-t)dS o注意①K与α相同处:“局部中传热系数”,计算时取均值②K与dS--对应。
Ki~Km~Ko:二、总传热系数K由和(3--34):基于不同的传热面:即:换热器在实际进行中,∵流体中结晶等的沉淀、结垢、结焦、聚合或冷却水中的藻类、细菌或流体对管才的腐蚀等原因,都会在管壁上形成污垢层。
传热计算一、传热方程式1、q=KA ΔtK 比例常数,为传热系数。
A 传热面积,单位J/S ·m 2K 。
Δt 温差(热量传递的推动力)单位K 。
2、热量衡算2.1焓差法 热负荷的计算q 热=W 热(H 1-H 2) WQ 冷=W 冷(h 1-h 2) WW 热 W 冷热流体和冷流体的质量流量,kg/s;H 1 H 2热流体最初和最终的焓,J/kg ;h 1 h 2冷流体最初和最终的焓,J/kg 。
2.2温差法 在缺乏焓数据时,换热过程无相变q 热=W 热C 热(T 1-T 2) Wq 冷=W 冷C 冷(t 1-t 2) WC 热 C 冷热流体和冷流体的质量流量,J/kg.k;T 1 T 2热流体最初和最终的温度,k ;t 1 t 2冷流体最初和最终的温度,k 。
2.3潜热法 发生相变q 热=W 热r 热 Wq 冷=W 冷r 冷 Wr 热 r 冷热流体和冷流体的汽化潜热。
二、平均温差计算1、间壁并流、逆流(Δt'/Δt">2)Δt 均=(Δt'-Δt")/ln(Δt'/Δt")Δt'换热器进口端的温度差;Δt"换热器出口端的温度差。
2、错流、折流的平均温差Δt 均=φΔt Δt 均逆R=(T 1-T 2)/(t 1-t 2)P=(t 1-t 2)/(T 1-t 1)根据R 、P 值,以及两流体的流动方式,查校正系数。
二、热传导傅里叶定律q=λA(t1-t2)/δλ比例常数(查表)W/m·K A传热面积 m2δ壁厚 m(t1-t2)传热温差三、105%酸室外最低温度-10℃,需保温温度20℃,钢板厚度0.018米,导热系数67.45W/(m.℃),罐体半径10米,高度8米,使用蒸汽0.5MPa,温度151.7℃,汽化潜热2107KJ/Kg,求传热面积及所需Φ32×4的无缝管的米数。
解:由105%酸罐壁面以对流和辐射两种方式散失于周围环境,1、热损量根据圆筒壁保温传热系数a T=9.4+0.052(t w-t)=9.4+0.052(20+10)=10.96 W/( m2℃)热损:Q=a T S(t w-t)=10.96×3.14×10×8×30=82594.56 W2、吸热量105%酸需吸收热量Q1=W1C1(t1-t2)=3.14×10×8×1.8×1000×1.47×30=19940256 W罐壁需吸收热量Q2=W2C2(t1-t2)=3.14×10×8×18×7.85×0.46×30=489825 WQ=Q1+ Q2=20430081 W3、所需0.5MPa蒸汽量W=Q/r =(20430081+82594.56 )/ 2107×1000=1.008 Kg 蒸汽密度:2.547Kg/m3蒸汽V=m/p=1.008/2.547=0.4m34、所需管道型号及长度蒸汽管道采用Φ32×4L=0.4/(3.14×0.012×0.012)=884m.。