第四章 静电学II-电介质静电学
- 格式:pdf
- 大小:158.71 KB
- 文档页数:7
大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
第22讲唯一性定理第4章介质中的电动力学2§2唯一性定理第22讲唯一性定理第4章介质中的电动力学(2)§4.2 唯一性定理在上节中我们说明静电学的基本问题是求出所有边界上满足边值关系或给定边界条件的泊松方程的解。
本节我们把这问题确切地表述出来,即需要给出哪一些条件,静电场的解才能唯一地被确定。
静电场的唯一性定理对于解决实际问题有着重要的意义。
因为它首先告诉我们,哪些因素可以完全确定静电场,这样在解决实际问题时就有所依据。
其次,对于许多实际问题,往往需要根据给定的条件作一定的分析,提出尝试解。
如果所提出的尝试解满足唯一性定理所要求的条件,它就是该问题的唯一正确的解。
下面我们先提出并证明一般形式的唯一定理,然后再证明有导体存在时的唯一性定理。
1. 静电问题的唯一性定理下面我们研究可以均匀分区的区域V ,即V 可以分为若干个均匀区域 V i ,每一个区域的电容率为ε i 。
设V 内有给定的电荷分布ρ(x )。
电势φ 在均匀区域 V i 内满足泊松方程2i ρε?=- (4.2---1)在两区域 V i 和 V j 的分界上满足边值关系()()i j i i j j nn εε=??= (4.2---2)泊松方程(4.2---1)式和边值关系(4.2---2)式是电势所必须满足的方程,它们属于电场的基本规律。
除此之外,要完全确定V 内的电场,还必须给出V 的边界S 上的一些条件。
下面提出的唯一性定理具体指出所需给定的边界条件。
唯一性定理:设区域V 内给定自由电荷分布,在V 的边界上S 上给定(1)电势φ| s 或(2)电势的法向导数?φ/?n | s ,则V 内的电场唯一确定。
也就是说,在V 内存在唯一的解,它在每个均匀区域内满足泊松方程(4.2---1),在两均匀区域分界面上满足边值关系,并在V 的边界S 上满足该给定的φ或?φ/?n 值。
证明设有两组不同的解φ' 和φ'' 满足唯一性条件定理的条件。