4.6场效应管器件(简)
- 格式:ppt
- 大小:444.00 KB
- 文档页数:30
场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
常用场效应管参数及代换场效应管(Field Effect Transistor,FET)是一种用来放大和控制电流的电子元件。
它是由一个金属门极与两个半导体区域(源极和漏极)组成。
在常见的场效应管中,有三种主要类型:结型场效应管(JFET),增强型场效应管(MOSFET)和绝缘栅极场效应管(IGBT)。
本文将重点介绍增强型场效应管(MOSFET)的常用参数及其代换方法。
一、常用参数1.电流参数(i)静态漏极电流(IDSS):在门极电压VGS=0时,漏极电流的值。
(ii) 静态漏极电流温度系数:静态漏极电流随温度变化的变化率。
(iii) 动态漏极电流(ID):在特定的电压和温度条件下,从漏极流出的电流的值。
2.电压参数(i)额定漏极到源极电压(VDS):漏极和源极之间的最大电压。
(ii) 额定源极到栅极电压(VGS):源极和栅极之间的最大电压。
(iii) 阈值电压(VT):当栅极电压超过阈值电压时,通道开始导电。
(iv) 栅极欠压(VGS(th)):栅极电压低于这个电压时,场效应管处于截止区。
(v) 漏极饱和电压(VDS(sat)):漏极电压达到饱和时,在这个电压下,漏极与源极之间的电流达到最大值。
(vi) 最大可承受漏极电流(IDM):超过这个电流值时,场效应管可能损坏。
3.输入参数(i) 栅极输入电容(Cgs):栅极和源极之间的电容。
(ii) 栅极反向传导(gfs):源极电流变化与栅极电压变化之间的比例关系。
4.输出参数(i) 漏极输出电容(Cds):漏极和源极之间的电容。
(ii) 漏极跟随导纳(gd):漏极电流变化与漏极电压变化之间的比例关系。
5.尺寸参数(i)源极宽度(W):源极沿着通道长度方向的尺寸。
(ii) 通道长度(L):源极和漏极之间的距离。
二、代换方法1.输出导纳代换场效应管的漏极跟随导纳gd可以用其中一个公式进行代换:gd ≈ 2IDSS/VGS(th)2.输出电容代换输出电容Cds可以用其中一个公式进行代换:Cds ≈ CM + CGS x VDS/VGS其中CM是一个常数,等于通道本身的电容,CGS是栅极和源极之间的电容。
场效应管(Field-Effect Transistor,简称FET)是一种半导体器件,常用于放大和开关电路。
根据不同的接法,场效应管可以分为三种基本接法:共源极接法、共漏极接法和共栅极接法。
1.共源极接法(Common Source Configuration):
在这种接法中,信号输入连接到场效应管的栅极(Gate),信号输出则从漏极(Drain)获得。
源极(Source)通过一个电阻连接到地,起到稳定偏置的作用。
这种接法适用于放大电路,增益较高,但输出相位与输入相位相反。
2.共漏极接法(Common Drain Configuration):
在这种接法中,信号输入连接到场效应管的栅极,信号输出则来自源极。
漏极通过一个电阻连接到电源正极,起到稳定偏置的作用。
这种接法适用于缓冲放大电路,输出与输入相位一致,且具有较低的输出阻抗。
3.共栅极接法(Common Gate Configuration):
在这种接法中,信号输入连接到场效应管的源极,信号输出则从漏极获得。
栅极通过一个电阻连接到电源正极,起到稳定偏置的作用。
这种接法适用于高频放大和开关电路,具有较低的输入阻抗和高的增益。
这些接法根据场效应管不同的引脚连接方式,可满足不同的电路设计需求。
值得注意的是,在实际应用中,还需要考虑电源电压、电流限制、电路参数匹配以及静态工作点的选择等因素,以确保电路正常工作和性能优良。
因此,在使用场效应管时,建议参考相关的技术资料、电路图和应用手册,并进行合理的电路设计和测试验证。
场效应管原理场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。
有N沟道器件和P沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。
1.1 1.1.1MOS场效应管MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管一、工作原理1.沟道形成原理当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。
当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加VGS,当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
如果此时加有漏源电压,就可以形成漏极电流ID。
在栅极下方形成的导电沟1线性电子电路教案道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。
随着VGS的继续增加,ID将不断增加。
简述场效应管的主要参数
场效应管(Field Effect Transistor,简称FET)是一种基于半导体物理学原理的集成电路器件,是晶体管的一种。
它是一种通过电子在半导体材料表面电场的作用下进行移动来调节电流的器件。
FET具有高输入阻抗、低噪声、低功耗、高可靠性等特点,因此在许多计算机、通信和电子设备中得到了广泛的应用。
FET的主要参数包括:
1. 栅极电压(Gate-to-Channel voltage):栅极电压是控制电流流动的关键参数,它决定了FET的导电性能。
通常,栅极电压越高,FET的导电性能越好,但也会使其功耗增加。
2. 漏极电压(Channel-to-Source voltage):漏极电压是FET的输入电压,它决定了FET的放大倍数。
FET具有输入电阻大、非线性低等特点,因此漏极电压较低时,FET的放大倍数较高。
3. 漏极电流(Channel-to-Source电流):漏极电流是FET的放大倍数和输出能力的重要参数。
当漏极电压较低时,FET的电流较小,因此输出能力较弱;当漏极电压较高时,FET的电流较大,因此输出能力增强。
4. 工作频率:FET的工作频率取决于栅极和漏极之间的电阻和栅极电压。
FET的电阻较大,因此其工作频率较高。
5. 功率:FET的功率取决于栅极和漏极之间的电流和工作频率。
FET的功率较小,因此在小型设备中应用广泛。
除了以上主要参数外,FET还有其他参数,如栅极材料、漏极材料、极化方向等。
这些参数的选择会影响到FET的性能和应用。
此外,FET还具有可编程、反向输入等特点,因此广泛应用于控制和调节电路中。
六种场效应管场效应管(Field-Effect Transistor,简称FET)是一种非常重要的电子器件,它能够通过控制输入电场来调节输出电流。
场效应管分为MOSFET(金属氧化物半导体场效应管)和JFET(结型场效应管)两大类,每类中又分为增强型和耗尽型。
第一种场效应管是N沟道增强型MOSFET(N-Channel Enhanced MOSFET)。
N沟道增强型MOSFET是一种双极性器件,其栅极和漏极之间的电场控制输出电流。
当栅极电压为正值时,它吸引正极性的载流子,导致漏极电流增加。
N沟道增强型MOSFET通常用于低功率应用,如放大器和开关电路。
第二种场效应管是N沟道耗尽型MOSFET(N-Channel Depletion MOSFET)。
N沟道耗尽型MOSFET的工作原理与N沟道增强型MOSFET类似,但是它的栅极电压为0伏时有输出漏极电流,因此被称为耗尽型。
N沟道耗尽型MOSFET通常用于特定应用,如电压参考电路和电流源。
第三种场效应管是P沟道增强型MOSFET(P-Channel Enhanced MOSFET)。
P沟道增强型MOSFET与N沟道增强型MOSFET原理相同,但是它使用了P型半导体材料。
当栅极电压为负值时,它吸引负极性的载流子,导致漏极电流增加。
P沟道增强型MOSFET通常用于低功率应用和负电压电路。
第四种场效应管是P沟道耗尽型MOSFET(P-Channel Depletion MOSFET)。
P沟道耗尽型MOSFET与P沟道增强型MOSFET原理相同,只是栅极电压为0伏时有输出漏极电流。
P沟道耗尽型MOSFET通常用于特定应用,如负电压参考电路和负电流源。
第五种场效应管是结型场效应管(Junction Field-Effect Transistor,简称JFET)。
JFET是一种单极性器件,通过控制栅源电压来调节输出电流。
JFET分为N沟道和P沟道两种类型,其工作原理均基于P-N结的特性。
5000种场效应管参数查询场效应管(Field-effect transistor,简称FET)是一种重要的电子元器件,常用于放大和开关电路中。
根据不同的结构和特性,场效应管有很多不同的类型和型号。
在本文中,我将介绍一些常见的场效应管型号及其参数。
1.MOSFET(金属-氧化物-半导体场效应管)MOSFET是目前最常见的一种场效应管。
它有三个重要参数:漏极-源极间饱和电压(Vds),漏极电流(Id)和栅极电压(Vgs)。
不同的型号有不同的额定值,比如常见的IRF510型号的Vds为100V,Id为5.6A,Vgs为-20V。
2.JFET(结型场效应管)JFET是另一种常见的场效应管类型。
它也有三个重要参数:漏极-源极间饱和电压(Vds)、漏极电流(Id)和栅极电压(Vgs)。
与MOSFET 不同,JFET的工作原理是根据PN结的导电特性来实现的。
常见的2N3819型号的Vds为25V,Id为10mA,Vgs为-5V。
3.IGBT(绝缘栅双极结型场效应管)IGBT是一种结合了双极晶体管和MOSFET的特点的高功率场效应管。
它的主要参数包括最大漏极-源极间饱和电压(Vce(sat))、最大漏极电流(Ic)和最大栅极电压(Vge)。
常见的IRG4PC40W型号的Vce(sat)为1.8V,Ic为50A,Vge为20V。
S(沟道型超级结框场效应管)5.MESFET(金属半导体场效应管)以上仅是几种常见的场效应管型号及其参数的简要介绍。
实际上,市面上有成千上万种不同型号的场效应管,每种型号都有其自身的特性和应用领域。
因此,在选择和使用场效应管时,需要根据具体的应用需求和电路设计要求来确定合适的型号和参数。
同时还需要查阅相关的器件手册和数据表,以获取更详细的参数信息。
简述场效应管的主要参数场效应管(Field Effect Transistor,简称FET)是一种重要的电子器件,具有许多主要参数。
本文将对场效应管的主要参数进行简要描述。
1. 漏极电流(ID):漏极电流是场效应管的重要参数之一。
它表示通过漏极的电流大小。
漏极电流的大小与栅极电压(VG)和漏极电压(VD)有关。
漏极电流的大小决定了场效应管的工作状态和性能。
2. 转导(Transconductance,简称gm):转导是场效应管的另一个重要参数。
它表示漏极电流变化与栅极电压变化之间的关系。
转导越大,代表场效应管的放大能力越强。
3. 阈值电压(Threshold Voltage,简称Vth):阈值电压是指栅极电压与漏极电流之间的电压差。
在阈值电压以下,场效应管基本上处于截止状态,无法正常工作。
4. 饱和电流(Saturation Current,简称IS):饱和电流是指场效应管工作在饱和区时的漏极电流。
饱和电流的大小与栅极电压和漏极电压之间的关系有关。
5. 最大耗散功率(Maximum Power Dissipation,简称Pdmax):最大耗散功率是指场效应管能够承受的最大功率。
超过最大耗散功率,场效应管可能会因过热而损坏。
6. 输入电容(Input Capacitance,简称Ciss):输入电容是指场效应管的输入端(栅极)与输出端(漏极)之间的电容。
输入电容的大小会影响场效应管的输入阻抗和频率响应。
7. 输出电容(Output Capacitance,简称Coss):输出电容是指场效应管的输出端(漏极)与地之间的电容。
输出电容的大小会影响场效应管的输出阻抗和频率响应。
8. 反馈电容(Feedback Capacitance,简称Crss):反馈电容是指场效应管的输出端(漏极)与输入端(栅极)之间的电容。
反馈电容的大小会影响场效应管的稳定性和频率响应。
9. 输出导纳(Output Admittance,简称Yos):输出导纳是指场效应管的输出端(漏极)对输入端(栅极)的导纳。