2015届高考数学(理科)二轮配套课件:专题五_第1讲_空间几何体
- 格式:ppt
- 大小:1.56 MB
- 文档页数:48
第2讲 空间中的平行与垂直考情解读 1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.1.线面平行与垂直的判定定理、性质定理线面平行的判定定理⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α线面平行的性质定理⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b线面垂直的判定定理⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Ol ⊥a ,l ⊥b ⇒l ⊥α线面垂直的性质定理⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b2.面面平行与垂直的判定定理、性质定理面面垂直的判定定理⎭⎪⎬⎪⎫a ⊥αa ⊂β⇒α⊥β面面垂直的性质定理⎭⎪⎬⎪⎫α⊥βα∩β=c a ⊂αa ⊥c ⇒a ⊥β面面平行的判定定理⎭⎪⎬⎪⎫a ⊂βb ⊂βa ∩b =Oa ∥α,b ∥α⇒α∥β面面平行的性质定理⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b提醒 使用有关平行、垂直的判定定理时,要注意其具备的条件,缺一不可. 3.平行关系及垂直关系的转化热点一 空间线面位置关系的判定例1 (1)设a ,b 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是( ) A .若a ⊥α且a ⊥b ,则b ∥α B .若γ⊥α且γ⊥β,则α∥β C .若a ∥α且a ∥β,则α∥β D .若γ∥α且γ∥β,则α∥β(2)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α思维启迪 判断空间线面关系的基本思路:利用定理或结论;借助实物模型作出肯定或否定. 答案 (1)D (2)D解析 (1)A :应该是b ∥α或b ⊂α;B :如果是墙角出发的三个面就不符合题意;C :α∩β=m ,若a ∥m 时,满足a ∥α,a ∥β,但是α∥β不正确,所以选D. (2)若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.设m、n是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m∥α,则m⊥β②若m⊥α,n⊥α,则m∥n③若m⊥α,m⊥n,则n∥α④若n⊥α,n⊥β,则β∥α其中真命题的序号为()A.①③B.②③C.①④D.②④答案 D解析①若α⊥β,m∥α,则m与β可以是直线与平面的所有关系,所以①错误;②若m⊥α,n⊥α,则m∥n,所以②正确;③若m⊥α,m⊥n,则n∥α或n⊂α,所以③错误;④若n⊥α,n⊥β,则β∥α,所以④正确.故选D.热点二平行、垂直关系的证明例2如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点,求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.思维启迪(1)利用平面P AD⊥底面ABCD的性质,得线面垂直;(2)BE∥AD易证;(3)EF是△CPD 的中位线.证明(1)因为平面P AD⊥底面ABCD,且P A垂直于这两个平面的交线AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形.所以BE⊥CD,AD⊥CD,由(1)知P A⊥底面ABCD.所以P A⊥CD.所以CD⊥平面P AD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.思维升华垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明 (1)如图,取CE 的中点G ,连接FG ,BG . ∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GF AB 为平行四边形,则AF ∥BG . ∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,∴AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE . 热点三 图形的折叠问题例3 如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?请说明理由.思维启迪 折叠问题要注意在折叠过程中,哪些量变化了,哪些量没有变化.第(1)问证明线面平行,可以证明DE ∥BC ;第(2)问证明线线垂直转化为证明线面垂直,即证明A 1F ⊥平面BCDE ;第(3)问取A 1B 的中点Q ,再证明A 1C ⊥平面DEQ . (1)证明 因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC .又因为DE ⊄平面A 1CB ,BC ⊂平面A 1CB , 所以DE ∥平面A 1CB .(2)证明 由图(1)得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 所以DE ⊥平面A 1DC .而A 1F ⊂平面A 1DC , 所以DE ⊥A 1F .又因为A 1F ⊥CD ,所以A 1F ⊥平面BCDE ,又BE ⊂平面BCDE , 所以A 1F ⊥BE .(3)解 线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ .理由如下: 如图,分别取A 1C ,A 1B 的中点P ,Q ,则PQ ∥BC . 又因为DE ∥BC , 所以DE ∥PQ .所以平面DEQ 即为平面DEP . 由(2)知,DE ⊥平面A 1DC , 所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点, 所以A 1C ⊥DP .所以A 1C ⊥平面DEP . 从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .思维升华 (1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,折线同一侧线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.如图(1),已知梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =2AD =4,E ,F 分别是AB ,CD 上的点,EF ∥BC ,AE =x .沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图(2)所示),G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D -BCF 的体积f (x )的函数式. (1)证明 作DH ⊥EF ,垂足为H ,连接BH ,GH ,因为平面AEFD ⊥平面EBCF ,交线为EF ,DH ⊂平面AEFD , 所以DH ⊥平面EBCF ,又EG ⊂平面EBCF ,故EG ⊥DH . 因为EH =AD =12BC =BG =2,BE =2,EF ∥BC ,∠EBC =90°,所以四边形BGHE 为正方形,故EG ⊥BH .又BH ,DH ⊂平面DBH ,且BH ∩DH =H ,故EG ⊥平面DBH . 又BD ⊂平面DBH ,故EG ⊥BD .(2)解 因为AE ⊥EF ,平面AEFD ⊥平面EBCF ,交线为EF ,AE ⊂平面AEFD , 所以AE ⊥平面EBCF .由(1)知,DH ⊥平面EBCF ,故AE ∥DH ,所以四边形AEHD 是矩形,DH =AE ,故以B ,F ,C ,D 为顶点的三棱锥D -BCF 的高DH =AE =x .又S △BCF =12BC ·BE =12×4×(4-x )=8-2x ,所以三棱锥D -BCF 的体积f (x )=13S △BFC ·DH=13S △BFC ·AE =13(8-2x )x =-23x 2+83x (0<x <4).1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行; (2)利用平行四边形进行转换; (3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;(2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;(2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.真题感悟1.(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案 B解析方法一若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错.方法二 如图,在正方体ABCD -A ′B ′C ′D ′中,用平面ABCD 表示α. A 项中,若m 为A ′B ′,n 为B ′C ′,满足m ∥α,n ∥α, 但m 与n 是相交直线,故A 错. B 项中,m ⊥α,n ⊂α,∴m ⊥n ,这是线面垂直的性质,故B 正确. C 项中,若m 为AA ′,n 为AB , 满足m ⊥α,m ⊥n ,但n ⊂α,故C 错. D 项中,若m 为A ′B ′,n 为B ′C ′, 满足m ∥α,m ⊥n ,但n ∥α,故D 错.2.(2014·辽宁)如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点. (1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.(1)证明 由已知得△ABC ≌△DBC ,因此AC =DC . 又G 为AD 的中点,所以CG ⊥AD .同理BG ⊥AD ,又BG ∩CG =G ,因此AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)解 在平面ABC 内,作AO ⊥BC ,交CB 的延长线于O . 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin 60°=3, 所以V D -BCG =V G -BCD =13S △DBC ·h=13×12BD ·BC ·sin 120°·32=12. 押题精练1.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①P A ∥平面MOB ; ②MO ∥平面P AC ; ③OC ⊥平面P AC ; ④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号). 答案 ②④解析 ①错误,P A ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面P AC .2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?并证明你的结论. (1)证明 如图,因为ABCD -A 1B 1C 1D 1为正方体, 所以B 1C 1⊥面ABB 1A 1. 因为A 1B ⊂面ABB 1A 1, 所以B 1C 1⊥A 1B .又因为A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, 所以A 1B ⊥面ADC 1B 1.因为A 1B ⊂面A 1BE ,所以平面ADC 1B 1⊥平面A 1BE . (2)解 当点F 为C 1D 1中点时,可使B 1F ∥平面A 1BE . 证明如下:取C 1D 1中点F ,连接EF ,B 1F 易知:EF ∥C 1D ,且EF =12C 1D .设AB 1∩A 1B =O ,连接OE ,则B 1O ∥C 1D 且B 1O =12C 1D ,所以EF ∥B 1O 且EF =B 1O , 所以四边形B 1OEF 为平行四边形. 所以B 1F ∥OE .又因为B 1F ⊄面A 1BE ,OE ⊂面A 1BE . 所以B 1F ∥面A 1BE .(推荐时间:60分钟)一、选择题1.(2014·广东)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定答案 D解析如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.2.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是()A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β答案 B解析根据定理、性质、结论逐个判断.因为α⊥β,m⊂α⇒m,β的位置关系不确定,可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.3.ABCD-A1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.A1C⊥BDC.AC1⊥平面CB1D1D.AC1⊥BD1答案 D解析因为ABCD-A1B1C1D1为正方体,所以DD1∥BB1且DD1=BB1,所以四边形DD1B1B为平行四边形,所以BD∥B1D1,因为BD⊄面CB1D1,B1D1⊂面CB1D1,所以BD∥平面CB1D1,故A正确;因为AA1⊥面ABCD,BD⊂面ABCD,所以AA1⊥BD,因为ABCD为正方形,所以AC⊥BD,因为AC∩AA1=A,所以BD⊥面A1ACC1,因为A1C⊂面A1ACC1,所以BD⊥A1C,故B正确.同理可证得B1D1⊥面A1ACC1,因为AC1⊂面A1ACC1,所以B1D1⊥AC1,同理可证CB1⊥AC1,因为B1D1∩CB1=B1,所以AC1⊥平面CB1D1,故C正确.排除法应选D.4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案 D解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,∴CD⊥平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,∴AB⊥平面ADC,又AB⊂平面ABC,∴平面ABC⊥平面ADC,故选D.5.直线m,n均不在平面α,β内,给出下列命题:①若m∥n,n∥α,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥n,n⊥α,则m∥α;④若m⊥β,α⊥β,则m∥α.其中正确命题的个数是()A.1 B.2C.3 D.4答案 D解析对①,根据线面平行的判定定理知,m∥α;对②,如果直线m与平面α相交,则必与β相交,而这与α∥β矛盾,故m∥α;对③,在平面α内取一点A,设过A、m的平面γ与平面α相交于直线b.因为n⊥α,所以n⊥b,又m⊥n,所以m∥b,则m∥α;对④,设α∩β=l,在α内作m′⊥β,因为m⊥β,所以m∥m′,从而m∥α.故四个命题都正确.6.在正三棱锥S-ABC中,M,N分别是SC,BC的中点,且MN⊥AM,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积是()A.12π B.32πC.36π D.48π答案 C解析由MN⊥AM且MN是△BSC的中位线得BS⊥AM,又由正三棱锥的性质得BS⊥AC,∴BS⊥面ASC.即正三棱锥S-ABC的三侧棱SA、SB、SC两两垂直,外接球直径为3SA=6.∴球的表面积S=4πR2=4π×32=36π.选C.二、填空题7.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数为_________________.答案 2解析①中m,n可能异面或相交,故不正确;②因为m∥α,n⊥β,且α⊥β成立时,m,n两直线的关系可能是相交、平行、异面,故不正确;③因为m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线一定垂直,正确.故③④正确.8.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).答案①③解析对于①,注意到该正方体的面中过直线AB的侧面与平面MNP平行,因此直线AB平行于平面MNP;对于②,注意到直线AB和过点A的一个与平面MNP平行的平面相交,因此直线AB与平面MNP相交;对于③,注意到此时直线AB与平面MNP内的一条直线MP平行,且直线AB位于平面MNP外,因此直线AB与平面MNP平行;对于④,易知此时AB与平面MNP相交.综上所述,能得出直线AB平行于平面MNP的图形的序号是①③.9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.令CF ⊥DF ,设AF =x ,则A 1F =3a -x .易知Rt △CAF ∽Rt △F A 1D ,得AC A 1F =AF A 1D, 即2a x =3a -x a, 整理得x 2-3ax +2a 2=0,解得x =a 或x =2a .10.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (不含端点)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝⎛⎭⎫12,1解析 破解此题可采用两个极端位置法,即对于F 位于DC 的中点时,t =1,随着F 点到C 点时,∵CB ⊥AB ,CB ⊥DK ,∴CB ⊥平面ADB ,即有CB ⊥BD ,对于CD =2,BC =1,∴BD =3,又AD =1,AB =2,因此有AD ⊥BD ,则有t =12, 因此t 的取值范围是⎝⎛⎭⎫12,1.三、解答题11.如图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点,(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1.证明 (1)直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5, ∴AB 2=AC 2+BC 2,∴AC ⊥BC .CC 1⊥平面ABC ,AC ⊂平面ABC ,∴AC ⊥CC 1,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,∵D 是AB 的中点,E 是C 1B 的中点,∴DE ∥AC 1,∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.12.如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,D ,E 分别为A 1B 1,AA 1的中点,点F 在棱AB 上,且AF =14AB . (1)求证:EF ∥平面BC 1D ;(2)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G 的位置;若不存在,请说明理由.(1)证明 取AB 的中点M ,连接A 1M .因为AF =14AB ,所以F 为AM 的中点. 又E 为AA 1的中点,所以EF ∥A 1M .在三棱柱ABC -A 1B 1C 1中,D ,M 分别是A 1B 1,AB 的中点,所以A 1D ∥BM ,A 1D =BM ,所以四边形A 1DBM 为平行四边形,所以A 1M ∥BD . 所以EF ∥BD .因为BD ⊂平面BC 1D ,EF ⊄平面BC 1D ,所以EF ∥平面BC 1D .(2)解 设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两部分的体积之比为1∶15,如图所示.则V E -AFG ∶VABC -A 1B 1C 1=1∶16,所以V E -AFGVABC -A 1B 1C 1=13×12AF ·AG sin ∠GAF ·AE 12×AB ·AC sin ∠CAB ·AA 1=13×14×12×AG AC =124×AGAC,由题意,124×AG AC =116,解得AG AC =2416=32.所以AG =32AC >AC ,所以符合要求的点G 不存在.13.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE ,F 为A ′C 的中点,A ′C =4.(1)求证:平面A ′DE ⊥平面BCD ;(2)求证:FB ∥平面A ′DE .证明 (1)由题意,得△A ′DE 是△ADE 沿DE 翻折而成的,∴△A ′DE ≌△ADE .∵∠ABC =120°,四边形ABCD 是平行四边形,∴∠A =60°.又∵AD =AE =2,∴△A ′DE 和△ADE 都是等边三角形.如图,连接A ′M ,MC ,∵M 是DE 的中点,∴A ′M ⊥DE ,A ′M = 3.在△DMC中,MC2=DC2+DM2-2DC·DM cos 60°=42+12-2×4×1×cos 60°,∴MC=13.在△A′MC中,A′M2+MC2=(3)2+(13)2=42=A′C2. ∴△A′MC是直角三角形,∴A′M⊥MC.又∵A′M⊥DE,MC∩DE=M,∴A′M⊥平面BCD.又∵A′M⊂平面A′DE,∴平面A′DE⊥平面BCD.(2)取DC的中点N,连接FN,NB.∵A′C=DC=4,F,N分别是A′C,DC的中点,∴FN∥A′D.又∵N,E分别是平行四边形ABCD的边DC,AB的中点,∴BN∥DE.又∵A′D∩DE=D,FN∩NB=N,∴平面A′DE∥平面FNB.∵FB⊂平面FNB,∴FB∥平面A′DE.。