当前位置:文档之家› 空间几何体专题复习

空间几何体专题复习

空间几何体专题复习
空间几何体专题复习

空间几何体专题

第1讲 空间几何体(文/理)

热点一 三视图与直观图

例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )

A .20π

B .24π

C .28π

D .32π

(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )

答案 (1)C (2)D

解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S

锥侧

=1

2

×4π×4=8π,圆柱的侧面积S 柱侧

=4π×4=

16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.

(2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D.

思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到

的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.

跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()

(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()

答案(1)D(2)B

解析(1)由俯视图,易知答案为D.

(2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.

热点二几何体的表面积与体积

空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割

成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧. 例2 (1)(·北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )

A.16

B.13

C.1

2

D .1 (2)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点

E ,

F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD ,则几何体EFC 1-DBC 的体积为( )

A .66

B .68

C .70

D .72

答案 (1)A (2)A

解析 (1)由三视图知,三棱锥如图所示:

由侧视图得高h =1, 又底面积S =12×1×1=12.

所以体积V =13Sh =1

6.

(2)如图,连接DF ,DC 1,

那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×1

2

×(3+6)×6×6=12+54=66.

故所求几何体EFC 1-DBC 的体积为66.

思维升华 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.

跟踪演练2 某几何体的三视图如图所示,则这个几何体的体积为________.

答案

452

解析 由三视图可知,该几何体为如图所示的多面体ABCDEF (置于长方体ABCD —MNFG 中去观察),且点E 为DG 的中点,可得AB =BC =GE =DE =3,连接AG ,所以多面体ABCDEF 的体积为V 多面体ABCDEF

=V

三棱柱ADG —BCF

-V

三棱锥A —GEF

=12×(3+3)×3×3-13×(1

2

×3×3)×3=452

.

热点三 多面体与球

与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图. 例3 (1)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( ) A .4π B .12π C .16π

D .64π

(2)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再

向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )

A.500π3 cm 3

B.866π3 cm 3

C.1 372π3 cm 3

D.2 048π3

cm 3

答案 (1)C (2)A 解析 (1)在△ABC 中,

BC 2=AB 2+AC 2-2AB ·AC cos 60°=3, ∴AC 2=AB 2+BC 2, 即AB ⊥BC , 又SA ⊥平面ABC ,

∴三棱锥S -ABC 可补成分别以AB =1,BC =3,SA =23为长、宽、高的长方体, ∴球O 的直径=12+(3)2+(23)2=4, 故球O 的表面积为4π×22=16π. (2)过球心与正方体中点的截面如图,

设球心为点O ,球半径为R cm ,正方体上底面中心为点A ,上底面一边的中点为点B , 在Rt △OAB 中,OA =(R -2)cm ,

AB =4 cm , OB =R cm ,

由R 2=(R -2)2+42,得R =5, ∴V 球=43πR 3=500

3

π(cm 3).故选A.

思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形: (1)点P 可作为长方体上底面的一个顶点,点A 、B 、C 可作为下底面的三个顶点; (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.

跟踪演练3 在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,6

2

,则三棱锥A -BCD 的外接球体积为________. 答案

解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,

∴三棱锥的外接球的直径是长方体的体对角线长. 据题意???

AB ·

AC =

2,AC ·AD =3,

AB ·AD =

6,

解得???

AB =2,

AC =1,

AD =3,

∴长方体的体对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为

62

. ∴三棱锥外接球的体积为V =43π·(6

2

)3=6π.

1.(山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )

A.13+23π

B.13+23π

C.13+26π D .1+

26

π 答案 C

解析 由三视图知,半球的半径R =

2

2,四棱锥是底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×????2

23=13+26

π,故选C. 2.(课标全国丙)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π3

答案 B

解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π

2

.

3.(·山东)在梯形ABCD 中,∠ABC =π

2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD

所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π

3 D .2π 答案 C

解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱

-V

圆锥

=π·AB 2·BC -

13·π·CE 2·DE =π×12×2-13π×12×1=5π3

,故选C.

4.(·浙江)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.

答案

6

6

解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设点O 是AC 的中点,由已知得AC =

6,如图,

以OB 为x 轴,OA 为y 轴,过点O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 由A ?

???0,

62,0,B ????302,0,0,C ???

?0,-62,0,作DH ⊥AC 于点H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=30

6,

因此可设D ′?

??

?-

306cos α,-63,306sin α, 则BD ′——→=????-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以

cos θ=|cos 〈BD ′——→

,n 〉|=????????BD ′——→·n |BD ′——→|·

|n |=6

39+5cos α,

所以cos α=-1时,cos θ取最大值

6 6.

1.以三视图为载体,考查空间几何体面积、体积的计算.

2.考查空间几何体的侧面展开图及简单的组合体问题.

1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()

A.16 B.82+8

C.22+26+8 D.42+46+8

押题依据求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积.

答案 D

解析由三视图知,

该几何体是底面边长为22+22=22的正方形,高PD=2的四棱锥P-ABCD,因为PD⊥平面ABCD,且四边形ABCD是正方形,

易得BC⊥PC,BA⊥P A,

又PC=PD2+CD2=22+(22)2=23,

所以S△PCD=S△P AD=1

2×2×22=22,

S△P AB=S△PBC=1

2×22×23=2 6.

所以几何体的表面积为46+42+8.

2.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱

锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32π

D .36π

押题依据 多面体的外接球一般借助补形为长方体的外接球解决,解法灵活,是高考的热点. 答案 B

解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理,SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选

B.

3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.

押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案

42

3

解析 如图所示,

设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2

=4πr 1-r 2

≤4π×r 2+(1-r 2)

2

2π(当且仅当r 2=1-r 2,即r =2

2

时取等号). 所以当r =

2

2

时, V 球V 圆柱=4π3×13π(22

)2

×2=423.

A 组 专题通关

1.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为( )

答案 B

解析 由所截几何体可知,FC 1被平面AD 1E 遮挡,可得B 图.

2.下图是棱长为2的正方体的表面展开图,则多面体ABCDE 的体积为( )

A .2 B.23 C.43 D.83

答案 D

解析 多面体ABCDE 为四棱锥(如图),利用割补法可得其体积V =4-43=8

3

,选D.

3.某几何体的三视图如图所示,该几何体的体积为( )

A .8-2π

B .8-π

C .8-π

2

D .8-π

4

答案 B

解析 由三视图可知,该几何体是由一个棱长为2的正方体切去两个四分之一圆柱而成,所以该几何体的体积为V =(22-2×1

4

×π×12)×2=8-π.

4.(·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )

A .1

B .2

C .4

D .8 答案 B 解析 如图,

该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =1

2×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,

∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.

5.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′BCD 的顶点在同一个球面上,则该球的体积为( )

A.32π B .3π C.23

π D .2π

答案 A

解析 如图所示,

取BD 的中点E ,BC 的中点O ,连接A ′E ,EO ,A ′O ,OD .因为平面A ′BD ⊥平面BCD ,A ′E ⊥BD ,

平面A ′BD ∩平面BCD =BD , A ′E ?平面A ′BD , 所以A ′E ⊥平面BCD .

因为A ′B =A ′D =CD =1,BD =2, 所以A ′E =

22,EO =12,所以OA ′=32

. 在Rt △BCD 中,OB =OC =OD =12BC =3

2

所以四面体A ′BCD 的外接球的球心为O ,球的半径为32,所以V 球=43π(32)3=3

2

π.故选A.

6.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.

答案 2+

22

解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,

则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22

. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =2

2

+1. 由此可还原原图形如图.

在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=2

2

+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为

S =1

2(A ′D ′+B ′C ′)·A ′B ′ =12×(1+1+22)×2=2+22

. 7.(·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm 2,体积是________cm 3.

答案 72 32

解析 由三视图可知,该几何体为两个相同长方体的组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:

其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2).

8.如图所示,从棱长为6 cm 的正方体铁皮箱ABCD —A 1B 1C 1D 1中分离出来由三个正方形面板组成的几何图形.如果用图示中这样一个装置来盛水,那么最多能盛的水的体积为________ cm 3.

答案 36

解析 最多能盛多少水,实际上是求三棱锥C 1—CD 1B 1的体积. 又1

11

111

——C CD B C B C D V V 三棱锥三棱锥=

=13×(1

2

×6×6)×6=36(cm 3), 所以用图示中这样一个装置来盛水,最多能盛36 cm 3体积的水.

9.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于____________.

答案 2

解析 由三视图可知该几何体是一个直三棱柱,如图所示.

由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =1

2

×(6+8-10)=2.

10.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积V ; (2)求该几何体的侧面积S .

解 由已知可得,该几何体是一个底面为矩形,高为4,顶点在底面的投影是矩形中心的四棱锥E -ABCD .

(1)V =1

3

×(8×6)×4=64.

(2)四棱锥E -ABCD 的两个侧面EAD ,EBC 是全等的等腰三角形,且BC 边上的高h 1= 42+(8

2

)2=42;

另两个侧面EAB ,ECD 也是全等的等腰三角形,AB 边上的高h 2= 42+(6

2

)2=5.

因此S =2×(12×6×42+1

2

×8×5)=40+24 2.

B 组 能力提高

11.(·湖南)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积

原工件的体积

)( )

A.89π

B.169π

C.4(2-1)3π

D.12(2-1)3π

答案 A

解析 设三视图对应的几何体为底面半径为1,高为2的圆锥.如图,

设长方体的长、宽、高分别为a 、b 、c ,上、下底面中心分别为O 1,O 2,上方截得的小圆锥的高为h ,底面半径为r ,则a 2+b 2=4r 2.由三角形相似,得SO 1SO 2=O 1A

O 2B

即h 2=r

1,则h =2r .长方体的体积为V =abc =ab (2-2r )≤a 2+b 22×(2-2r )=2r 2(2-2r )=4r 2-4r 3(当且仅当a =b 时取等号,且0

设y =4r 2-4r 3(00,得0

y ′<0,得23

. ∴原工件材料的利用率为

1627

13

π×12×2=8

9π,故选A.

12.已知在三棱锥P —ABC 中,P A ⊥平面ABC ,AB =AC =P A =2,且在△ABC 中,∠BAC =120°,则三棱锥P —ABC 的外接球的体积为________. 答案

205π

3

解析 由余弦定理得:BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , ∴BC 2=22+22-2×2×2×(-1

2

)=12,

∴BC =2 3.设平面ABC 截球所得截面圆半径为r ,则2r =23

sin 120°=4,所以r =2.由P A =2

且P A ⊥平面ABC 知球心到平面ABC 的距离为1,所以球的半径为R =12+22=5,所以V

=43πR 3=205π3

. 13.如图,侧棱长为23的正三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =40°,过点A 作截面△AEF ,则截面△AEF 的周长的最小值为____________.

答案 6

解析 沿着侧棱VA 把正三棱锥V -ABC 展开在一个平面内,如图,

则AA ′即为截面△AEF 周长的最小值,且∠AVA ′=3×40°=120°. 在△VAA ′中,由余弦定理可得AA ′=6,故答案为6.

14.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与点P 重合),使得∠PEB =30°.

(1)求证:EF ⊥PB ;

(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.

(1)证明 ∵EF ∥BC 且BC ⊥AB , ∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE . 又BE ∩PE =E ,∴EF ⊥平面PBE , 又PB ?平面PBE ,∴EF ⊥PB .

(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =1

2BE ·PE ·sin ∠PEB

=14xy ≤14???

?x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2.

由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB , 在平面PBE 中,作PO ⊥BE 于点O , 又平面PBE ∩平面EFCB =BE , ∴PO ⊥平面EFCB .

即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×12=1,

S EFCB =1

2×(2+4)×2=6,

∴V P —BCFE =1

3

×6×1=2.

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)

专题37 空间几何体(知识梳理) 一、空间几何体 1、空间几何体的基本定义 如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。 围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。 几何体不是实实在在的物体。 平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。 例1-1.下列是几何体的是( )。 A 、方砖 B 、足球 C 、圆锥 D 、魔方 【答案】C 【解析】几何体不是实实在在的物体,故选C 。 例1-2.判断下列说法是否正确: (1)平静的湖面是一个平面。 (×) (2)一个平面长3cm ,宽4cm 。 (×) (3)三个平面重叠在一起,比一个平面厚。 (×) (4)书桌面是平面。 (×) (5)通过改变直线的位置,可以把直线放在某个平面内。 (√) 【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。 (6)平行四边形是一个平面。 (×) (7)长方体是由六个平面围成的几何体。 (×) (8)任何一个平面图形都是一个平面。 (×) (9)长方体一个面上任一点到对面的距离相等。 (√) (10)空间图形中先画的线是实线,后画的线是虚线。 (×) (11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。 (√) 例1-3.下列说法正确的是 。 ①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。 【答案】②③ 【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别; ②正确;③正确。 [多选]例1-4.下列说法正确的是( )。 A 、任何一个几何体都必须有顶点、棱和面 B 、一个几何体可以没有顶点 C 、一个几何体可以没有棱 D 、一个几何体可以没有面

高考数学复习-第十二讲--立体几何之空间角

第十二讲 立体几何之空间角 一、基本知识回顾 空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。 1) 异面直线所成角 1.022.π??? ? ???????????范围:,平移相交(找平行线替换)求法:向量法??? ??20π, 2) 直线与平面所成角 1.π???????????????? 范围0,2定义2.求法向量法?? ? ? ??2,0π n m n m ??=arcsin θ 若n m ⊥则α//a 或α?a 若n m //则α⊥a 3) 二面角[]1.0.2.π??? ?????? ?? ???? ???? ?????? 范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法 直接法3.求二面角大小的方法射影面积法向量法 θcos S S =' (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成锐二面角的平面 角) 当θ为锐角时,n m n m ??=arccos θ 当θ为锐角时,n m n m ??-=arccos πθ

二、例题讲解 1.在正三棱柱 111 ABC A B C -中,若 1 2, AB BB =求 1 AB与B C 1 所成的角的大小。 解:法一:如图一所示, 设O为C B 1 、B C 1 的交点,D AC 为的中点,则所求角是DOB ∠。 设 1 ,2 BB a AB a == 则,于是在DOB ?中, 1 222 1 1336 ,2, 2222 13 ,, 2 OB BC a BD a a OD AB a BD OB OD ==== ===+ 即90, DOB ∠=?∴? = ∠90 DOB 法二:取 11 A B的中点O为坐标原点,如图建立空间直角坐标系, xyz O-AB 2 1 的长度单位,则由

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

专题29 空间几何体的表面积与体积知识点

一、柱体、锥体、台体的表面积 1.旋转体的表面积 2.多面体的表面积 多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系: 二、柱体、锥体、台体的体积 1.柱体、锥体、台体的体积公式

2.柱体、锥体、台体体积公式间的关系 3.必记结论 (1)一个组合体的体积等于它的各部分体积之和或差; (2)等底面面积且等高的两个同类几何体的体积相等. 三、球的表面积和体积 1.球的表面积和体积公式 设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为 24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为3 4π3 R . 2.球的切、接问题(常见结论)

(1)若正方体的棱长为a ,则正方体的内切球半径是 12a ;与正方体所 . (2)若长方体的长、宽、高分别为a ,b ,h (3)若正四面体的棱长为a ;与 . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 1.一个正方体的体积为8,则这个正方体的内切球的表面积是 A .8π B .6π C .4π D .π 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 A .60 B .72 C .81 D .114 3.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π 2 D .π4

文科立体几何面角二面角专题-带答案

文科立体几何线面角二面角专题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 2.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且,求点到平面的距离. 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面 ABC,==3,==2. (I)求异面直线与AB所成角的余弦值; (II)求证:⊥平面; (III)求直线与平面所成角的正弦值. 5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证; (2)求二面角的余弦值. 6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点. (1)证明:平面; (2)证明:平面平面; (3)求直线与直线所成角的正弦值. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值. 8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且. (1)证明:平面; (2)求直线与平面所成角的正弦值. 9.在多面体中,底面是梯形,四边形是正方形,,,,, (1)求证:平面平面; (2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,. (1)证明:平面,平面平面;

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

空间几何体专题复习

空间几何体专题 第1讲 空间几何体(文/理) 热点一 三视图与直观图 例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π (2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( ) 答案 (1)C (2)D 解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧 =1 2 ×4π×4=8π,圆柱的侧面积S 柱侧 =4π×4= 16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. (2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到

的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果. 跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是() (2)一几何体的直观图如图,下列给出的四个俯视图中正确的是() 答案(1)D(2)B 解析(1)由俯视图,易知答案为D. (2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形. 热点二几何体的表面积与体积 空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割

立体几何复习专题(空间角)(学生卷)

专题一:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0?角。 直线和平面所成角范围:[0, 2 π]。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 上的射影c 与b 相交成?2角, 则有θ??cos cos cos 21= 。 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 3.二面角 (1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。若棱为l ,两个面分别为,αβ的二面角记为l αβ--。 (2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角 l αβ--的平面角。 说明:①二面角的平面角范围是[]0,π,因此二面 角有锐二面角、直二面角与钝二面角之分。 ②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。 (3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。 (4)面积射影定理: 面积射影定理:已知ABC ?的边BC 在平面α内,顶点A α?。设ABC ?的面积为S ,它在平 ?2?1c b a θP αO A B l B' O' A' B O A βα

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

空间几何体的三视图、表面积、体积专题练习

空间几何体的三视图、表面积、体积专题练习(宋) 1、若一个几何体的正视图与侧视图均为边长是1的正方形,且体积为1 2 ,则该几何体的俯视图是( ) 2. 3.已知某几何体的俯视图是如图所示的边长为2的正方形, 主视图与左视图是边长为2的正三角形,则其全面积是 A.8 B.12 C .4(1D . 4. A.1 4+ πB.1 3 4 + π C.8 3 4 + π D.8 4+ π 5. 如右图,已知一个锥体的正(主)视图,侧(左)视图和 俯视图均为直角三角形,且面积分别为3,4,6,则该锥 体的体积为 A.24B.8C.12D.4 6.如右图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视 图轮廓为正方形,则其体积是() A. 42 3 B. 43 3 C. 3 6 D. 8 3 俯视图

7.用大小相同的且体积为1的小立方块搭一个几何体,使它的主视图 和俯视图如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与15 8.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 9.一个几何体的三视图如图所示,其中正视图中 ABC 是边长为2的正三角形,俯视图为正六边 形,那么该几何体的侧视图的面积为 A.12 B.32 C.2 3 D.6 10. 如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图象可能是( ) 11.(2008年海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A. 22 B. 23 C. 4 D. 2 5 12.如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F 这六个字母之一,现放置成如图的三种不同的位 置,则字母A,B,C 对面的字母分别为 ( ) (A) D ,E ,F ( B) F ,D ,E ( C) E, F ,D ( D) E, D,F 13.一个正三棱柱的三视图如下所示,则这个正三棱柱的高和底面边长分别为( ). A. 2, B. 2 C. 4,2 D. 2,4 14如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为( ). (不考虑接触点) 主视图 正视图侧视图 俯视图 A 俯视图 左视图 正视图 俯视图 侧视图 C A

空间向量与立体几何专题(含答案)

2011届高考专题复习空间向量与立体几何 一、近年考情分析与2011年广东命题走势 纵观07-10广东试题,我们可以发现,此部分内容涉及试题数及分值为: 立体几何的复习要牢固树立以下的思维脉络:证线面垂直(或平行),转化为证线线垂直(或平行);证面面垂直(或平行),转化为证线面垂直(或平行)或证线线垂直(或平行). 二、广东考题剖析及热点题型讲析 热点1 空间几何体的结构、三视图、直观图 1.(08年广东5)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( A ) E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

2.(10年广东6)如图1,△ABC为正三角形,AA'//BB'//CC',CC'⊥平面ABC且3AA'=3 2 BB' =CC'=AB,则多面体ABC-A'B'C'的正视图(也称主视图)是 ( D ) 3.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是() A.2 B.1 C. D. 【答案】B 本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其 体积为. 4.【2010·全国卷2理数】已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为() A.1 B. C.2 D.3 【答案】C

【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a ,则高 所以体积 ,设,则 ,当y 取最值时, ,解得a=0或a=4时,体积最大,此时 ,故选C. 5.如下图所示,四边形OABC 是上底为2下底为6,底角为45度的等腰梯形,由斜二侧画法,画出这个梯形的直观图O ’A ’B ’C ’,在直观图中梯形的高为( C ) A 、 32 B 、1 C 、22 D 、12 6.(全国Ⅰ新卷理10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π (B) 2 73 a π (C) 2 113 a π (D) 25a π 【答案】B 解析:如图,P 为三棱柱底面中心,O 为球心,易知 2331,32AP a a OP a =?==,所以球的半径R 满足: 2222 317( )()3212 R a a a =+=,故2 2743 S R a ππ==球 . 热点2 点线面的位置关系 空间点、线、面位置关系是立体几何中的重要关系,在高考中,选择题、填空题几乎年年考,且常以棱柱、棱锥、和正方体为背景,主要考查平面的基本性质、空间直线与直线、直线与

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

【精选】浙江专版高考数学二轮专题复习知能专练十三空间几何体的三视图表面积及体积

知能专练(十三) 空间几何体的三视图、表面积及体积 一、选择题 1.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( ) 解析:选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽 度为 3 2 ,与题中所给的侧视图的宽度1不相等,因此选C. 2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的 最大球的半径为( ) A .1 B .2 C .3 D .4 解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2S a + b + c = 2×1 2×6×86+8+10 =2,故选B. 3.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积为 ( ) A .4π B .3π C .2π D .π 解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.

4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体 积分别是( ) A .45,8 B .45, 8 3 C .4(5+1), 8 3 D .8,8 解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为 2,侧面上的斜高为 22+12=5,所以S 侧=4×? ?? ??12×2×5=45, V =1 3 ×22×2=83 .5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其 中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A .10 B .12 5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯 形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16 解析:选B 由三视图可知该多面体是一个组合体,如图所示,其下面是一个底面为等腰直角三角形的直三棱柱,上面是一个底面为等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为 + 2×2= 12,故选B. 6.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的 面积为2 3 ,则其侧视图的面积为( )

立体几何复习专题(空间角)

专题:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 1:三棱柱111B A O OAB -,平面11O OBB ⊥平面OAB , 90,601=∠=∠AOB OB O ,且12,OB OO == 3OA =,求异面直线B A 1与1AO 所成角的余弦。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0角。 直线和平面所成角范围:0, 2 π 。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 A B O 1A 1B 1O

经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面的斜线a 与内一直线b 且a 与相交成 1 角,a 在上的射影c 与b 相交成2 角, 则有θ??cos cos cos 21= 。 由(3)中的公式同样可以得到:平面的斜线和它在平面 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 考点二:直线和平面所成的角 例2. 如图,在三棱柱ABC A B C '''-中,四 边形A ABB ''是菱形,四边形BCC B ''是矩形, C B AB ''⊥,02,4,60C B AB ABB '''==∠=, 求AC '与平面BCC B ''所成角的正切。 3:(1)在0 120的二面角P a Q --的两个面P 与Q 内分别有两点A B 、,已知点A 和点B 到棱的距离分别为2,4cm cm ,且线段10AB cm =。求: ①直线AB 和棱a 所成角的正弦值;②直线AB 和平面Q 所成角的正弦值。 A B C A ' B ' C ' ?2 ?1c b a θP α O A B

2021专题9 立体几何与空间向量(解析版)

专题9 立体几何与空间向量 从近几年的高考试题来看,所考的主要内容是: (1)有关线面位置关系的组合判断,试题通常以选择题的形式出现,主要是考查空间线线、线面、面面位置关系的判定与性质; (2)有关线线、线面和面面的平行与垂直的证明,试题以解答题中的第一问为主,常以多面体为载体,突出考查学生的空间想象能力及推理论证能力; (3)线线角、线面角和二面角是高考的热点,选择题、填空题皆有,解答题中第二问必考,一般为中档题,在全卷的位置相对稳定,主要考查空间想象能力、逻辑思维能力和转化与化归的应用能力. 预测2021年将保持稳定,一大二小.其中客观题考查面积体积问题、点线面位置关系(各种角的关系或计算)等;主观题以常见几何体为载体,考查平行或垂直关系的证明、线面角或二面角三角函数值的计算等. 一、单选题 1.(2020·山东高三下学期开学)设,,m n l 为三条不同的直线,,a β为两个不同的平面,则下面结论正确的是( ) A .若,,//m n αβαβ??,则//m n B .若//,//,m n m n αβ⊥,则αβ⊥ C .若,,m n αβαβ⊥⊥⊥,则m n ⊥ D .//,//,,m n l m l n αα⊥⊥,则l α⊥ 【答案】C 【解析】 A 选项中,,m n 可能异面; B 选项中,,αβ也可能平行或相交;D 选项中,只有,m n 相交才可推出l α⊥. C 选项可以理解为两个相互垂直的平面,它们的法向量相互垂直. 故选:C 2.(2020届山东省潍坊市高三模拟二)已知三棱锥D ABC -的所有顶点都在球O 的球面上,2AB BC ==, AC =D ABC -体积的最大值为2,则球O 的表面积为( ) A .8π B .9π C . 25π 3 D . 1219 π 【答案】D 【解析】

届高三文科数学立体几何空间角专题复习

届高三文科数学立体几何空间角专题复习 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2015届高三文科数学立体几何空间角专题复习 考点1:两异面直线所成的角 例1.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 例2.(2010全国卷1文数)直三棱柱111ABC A B C -中,若 90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的 角等于( C ) (A) 30° (B) 45° (C) 60° (D) 90° 变式训练: 1.(2009全国卷Ⅱ文)已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( C ) (A ) 1010 (B) 15 (C ) 31010 (D) 35 2.如图,直三棱柱111ABC A B C -,90BCA ?∠=,点1D 、1F 分别是11A B 、11A C 的中点, 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B .21 C .15 30 D . 10 15 3.(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A . 55 B . 53 C . 5 5 D .35 第3题图 第4题图 第5题图 4.(2007全国Ⅰ·文)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线 1A B 与1AD 所成角的余弦值为( )

相关主题
文本预览
相关文档 最新文档