空间几何体复习资料
- 格式:doc
- 大小:1.01 MB
- 文档页数:9
第一章 空间几何体一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
(三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)2、空间几何体的体积 ①柱体的体积V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积1)3V S S h =++⨯下上( ④球体的体积343V R π=222r rl Sππ+=二、例题例1下列说法中,正确的是( ) .(A )有两个面互相平行,其余各面都是平行四边形的几何体叫做棱柱 (B )棱柱的侧棱长一定相等, 侧面是平行四边形(C )有一个面是多边形,其余各面是三角形的几何体叫棱锥(D )有两个面是相互平行的相似多边形,其余各面都是梯形的多面体一定是棱台 例2下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④例3如图所示,在长方体////D C B A ABCD -中,用截面截下一个棱锥//DD A C -,求棱锥//DD A C -的体积与剩余部分得体积之比.例4如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.三、练习1下列命题中,正确的是( ).(A )有两个面平行,其余各面都是四边形的几何体叫棱柱 (B )有两个面平行,其余各面都是平行四边形的几何体叫棱柱 (C )有一个面是多边形,其余各面都是三角形的几何体叫棱锥 (D )棱台各侧棱的延长线交于一点2.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A.2倍 B.42倍 C.22倍 D.21倍/AABCD /D /B/C3.已知三个球的体积之比为1:8:27,则它们的表面积之比为( )A .1:2:3B .1:4:9C .2:3:4D .1:8:27 4、下列各组几何体中是多面体的一组是( ) A 三棱柱 四棱台 球 圆锥 B 三棱柱 四棱台 正方体 圆台 C 三棱柱 四棱台 正方体 六棱锥 D 圆锥 圆台 球 半球 5.下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直 6.若右图是一个几何体的三视图,则这个几何体是 ( ) (A ) 圆锥 (B)棱柱 (C )圆柱 (D)棱锥7、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( ) A 2 B 2.5 C 5 D 10 8.棱长都是1的三棱锥的表面积为( )C.9.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对11、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
专题37 空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。
围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。
几何体不是实实在在的物体。
平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。
例1-1.下列是几何体的是( )。
A 、方砖B 、足球C 、圆锥D 、魔方【答案】C【解析】几何体不是实实在在的物体,故选C 。
例1-2.判断下列说法是否正确:(1)平静的湖面是一个平面。
(×)(2)一个平面长3cm ,宽4cm 。
(×)(3)三个平面重叠在一起,比一个平面厚。
(×)(4)书桌面是平面。
(×)(5)通过改变直线的位置,可以把直线放在某个平面内。
(√)【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。
(6)平行四边形是一个平面。
(×)(7)长方体是由六个平面围成的几何体。
(×)(8)任何一个平面图形都是一个平面。
(×)(9)长方体一个面上任一点到对面的距离相等。
(√)(10)空间图形中先画的线是实线,后画的线是虚线。
(×)(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。
(√) 例1-3.下列说法正确的是 。
①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。
【答案】②③【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;②正确;③正确。
[多选]例1-4.下列说法正确的是( )。
A 、任何一个几何体都必须有顶点、棱和面B 、一个几何体可以没有顶点C 、一个几何体可以没有棱D 、一个几何体可以没有面【答案】BC【解析】球只有一个曲面围成,故A 错、B 对、C 对,由于几何体是空间图形,故一定有面,D 错,故选BC 。
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。
2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
知识空间立体几何知识点归纳:1. 空间几何体的类型( 1)多面体: 由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。
( 2) 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
如圆柱、圆锥、圆台。
2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。
正棱柱:底面多边形是正多边形的直棱柱。
正棱锥:底面是正多边形且所有侧棱相等的棱锥。
正四面体:所有棱都相等的四棱锥。
3. 空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : S 2 rl 2 r2圆锥的表面积: S rlr2圆台的表面积:Srlr2RlR2球的表面积:S4 R 24.空间几何体的体积公式: VS底 h: V1h柱体的体积锥体的体积S 底3台体的体积:1球体的体积: V43V( S 上下下hR3S 上 SS )35. 空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
画三视图的原则:长对正、宽相等、高平齐。
即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。
6 . 空间中点、直线、平面之间的位置关系( 1) 直线与直线的位置关系:相交;平行;异面。
(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。
(3)平面与平面的位置关系:平行;相交。
7.空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。
②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
④线面垂直的性质定理:垂直于同一平面的两直线平行。
(2)线线垂直的判断:①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
空间几何体知识点梳理:一、常见空间几何体定义:1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,(1) 侧棱垂直于底面的棱柱称为直棱柱,直棱柱的侧棱即为棱柱的高.(2) 底面为正多边形的直棱柱称为正棱柱,两底面中心的连线即为棱柱的高.2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高.(2) 底边长和侧棱长都相等的三棱锥叫做正四面体.(3) 依次连结不共面的四点构成的四边形叫做空间四边形.3 .棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.4 .圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.5 .圆锥:以直角三角形 的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥.6 .圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.7 .球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球.二、空间几何体的三视图和直观图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.注:1、球的三视图都是圆,长方体的三视图都是矩形.2、圆柱的正视图、侧视图都是全等矩形,俯视图是圆.3、圆锥的正视图、侧视图都是全等的等腰三角形,俯视图是圆及圆心.4、圆台的正视图、侧视图都是全等的等腰体性,俯视图是两个同心圆。
表示空间图形的平面图形 ,叫做空间图形的直观图.可用 斜二测画法画空间图形的直观图二、简单几何体的表面积与体积知识点梳理:1.旋转体的表面积(1) 圆柱的表面积S =2πr2+2πrl( 其中r 为底面半径,l 为母线长) .(2) 圆锥的表面积S =πr2+πrl (其中r 为底面半径,l 为母线长) .(3) 圆台的表面积公式S ='22'r r r l rl +++ 其中r′ 、r 为上、下底面半径,l 为母线长) .(4) 球的表面积公式S =4π2R ( 其中R 为球半径) .2.几何体的体积公式(1)柱体的体积公式V =Sh(其中S 为底面面积,h 为高).(2)锥体的体积公式V =13Sh(其中S 为底面面积,h 为高). (3)台体的体积公式V =13(S +SS′+S′)h(其中S′、S 为上、下底面面积,h 为高). (4)球的体积公式V =43π3R (其中R 为球半径). 题型总结:一、空间几何体题型精选讲解题型一 空间几何体的基本概念的考察1、下列命题中正确的是 ( )A .以直角三角形的一直角边所在的直线为轴旋转所得的旋转体是圆锥B .以直角梯形的一腰所在的直线为轴旋转所得的旋转体是圆台C .圆柱、圆锥、圆台的底面都是圆D .圆锥的侧面展开图为扇形,这个扇形的半径等于圆锥底面圆的半径题型二 三视图的考察1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( )A .48+122B .48+24 2C .36+12 2D .36+24 22、(2011·辽宁) 一个正三棱柱的侧棱长和底面边长相等,体积为23 ,它的三视图中的俯视图如下图所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2D. 3题型三 平面图的直观图(斜二测面法)1、如图所示的直观图,其平面图形的面积为 ( )A .3 B.322C .6D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( )题型四 其他类型:展开、投影、截面、旋转体等 1、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________.2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到C1 的最短距离为 ( )A .52 B.74 C .45 D .3103、已知半径为5 的球的两个平行截面的周长分别为6π 和8π ,则两平行截面间的距离为 ( )A .1B .2C .1 或7D .2 或6二、简单几何体的表面积与体积题型精选讲解题型一 与三视图相 结合1、(2010· 天津) 一个几何体的三视图如图所示,则这个几何体的体积为________2、已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是:A.4π3 B .2πC.8π3D.10π3题型二 内接与外接的知识 1、(2008·福建)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是________.2、(2011·全国新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.补充知识:1.平行于棱锥底面的截面的性质棱锥与平行于底面的截面所构成的小棱锥,有如下比例性质:S 小锥底S 大锥底=S 小锥全面积S 大锥全面积=S 小锥侧S 大锥侧=对应线段(如高、斜高、底面边长等)的平方之比. 注:这个比例关系很重要,在求锥体的侧面积、底面积的比时,会大大简化计算过程;在求台体的侧面积、底面积的比时,将台体补成锥体,也可应用这个关系式.2.有关棱柱直截面的补充知识在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的上、下底面就是直截面.棱柱的侧面积与截面周长有如下关系:S 棱柱侧 =c 直截l ( 其中c 直截 、l 分别为棱柱的直截面周长与侧棱长) .3.圆柱、圆锥、圆台、球的表面积和体积的计算(1) 圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原几何体的关系是掌握它们的面积公式及解决相关问题的关键.(2) 计算柱体、锥体、台体的体积关键是根据条件求出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面问题.。
专题37空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。
围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。
几何体不是实实在在的物体。
平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。
例1-1.下列是几何体的是()。
A 、方砖B 、足球C 、圆锥D 、魔方【答案】C【解析】几何体不是实实在在的物体,故选C 。
例1-2.判断下列说法是否正确:(1)平静的湖面是一个平面。
(×)(2)一个平面长3cm ,宽4cm 。
(×)(3)三个平面重叠在一起,比一个平面厚。
(×)(4)书桌面是平面。
(×)(5)通过改变直线的位置,可以把直线放在某个平面内。
(√)【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。
(6)平行四边形是一个平面。
(×)(7)长方体是由六个平面围成的几何体。
(×)(8)任何一个平面图形都是一个平面。
(×)(9)长方体一个面上任一点到对面的距离相等。
(√)(10)空间图形中先画的线是实线,后画的线是虚线。
(×)(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。
(√)例1-3.下列说法正确的是。
①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。
【答案】②③【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;②正确;③正确。
例1-4.如图所示的是平行四边形ABCD 所在的平面,有下列表示方法:①平面ABCD ;②平面BD ;③平面AD ;④平面ABC ;⑤AC ;⑥平面α。
空间几何体知识点总结一、点、线、面1. 点:点是空间的基本要素,没有长、宽、高,只有位置,用字母表示,如A、B、C等。
2. 线:由无限多个点组成的集合,是一种没有宽度只有方向的图形,分为直线和曲线两种。
- 直线:不含任何弯曲的线段,用两个点表示。
- 曲线:含有至少一段弯曲的线段。
3. 面:是由无限多个线组成的集合,是一种有长和宽但没有高度的图形,可以分为平面和曲面两种。
- 平面:没有限定的表面,如白纸的一面。
- 曲面:有曲度且没有边界的平面,常见的如球面、圆柱面等。
二、多面体1. 三棱锥和四棱锥:三棱锥和四棱锥是由底面和三个(四个)三角形面组成的几何体,具有尖顶和底部的多面体,如金字塔就是一种三棱锥。
2. 正多面体:正多面体是每个面都是正多边形的多面体,常见的有正立体角、正方体和正十二面体等。
3. 钝角多面体:钝角多面体是有一些面是钝角形的多面体,常见的有十二面体和二十面体等。
三、棱柱和棱台1. 棱柱:棱柱是以一个多边形为底面,侧面为平行四边形的几何体,根据底面形状的不同,可以分为三棱柱、四棱柱等。
2. 棱台:棱台是以一个多边形为底面,上下底面平行且相等的多面体,也根据底面形状的不同可以分为三棱台、四棱台等。
四、球面1. 球:球是一种特殊的曲面,就是一个没有边界、厚度的曲面,是由所有到一个给定点(球心)距离不大于给定半径的点的集合组成。
2. 球面积和体积:球面积和体积的计算公式分别是4πr^2和(4/3)πr^3,其中r为球的半径。
五、坐标系1. 直角坐标系:直角坐标系是用坐标轴构成的平面直角坐标系,通常用x、y轴表示,原点为坐标轴的交点,可以表示二维平面上的点。
2. 三维坐标系:三维坐标系是在直角坐标系的基础上加上z轴,表示三维空间内的点。
六、平行线、平行面、垂直线1. 平行线:平行线是两条直线在同一个平面内,且没有交点的直线。
2. 平行面:平行面是在三维空间内没有交点的两个平面。
3. 垂直线:垂直线是两条直线的夹角为90°,表示两条线在空间的相互关系。
空间几何体单元复习【重要知识点】1.一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都________________,由这些面所围成的多面体叫做棱柱.2.一般地,有一个面是多边形,其余各面都是________________________________,由这些面所围成的多面体叫做棱锥.3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫________.4.以直角三角形的一条________所在直线为旋转轴,其余两边旋转形成的面围成的旋转体叫做圆锥.5.(1)用一个________________________的平面去截棱锥,底面与截面之间的部分叫做棱台.(2)用一个________于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.6、以半圆的________所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.7.由____________________组合而成的几何体叫做简单组合体.8.平行投影与中心投影的不同之处在于:平行投影的投影线是____________,而中心投影的投影线________________.9.三视图包括____________、____________和____________,其中几何体的____________和____________高度一样,____________与____________长度一样,____________与____________宽度一样.10.空几何体的直观图:掌握用斜二测画法画水平放置的平面图形的直观图的基本步骤11.旋转体的表面积名称图形公式圆柱底面积:S底=________侧面积:S侧=________ 表面积:S=2πr(r+l)圆锥底面积:S底=________侧面积:S侧=________ 表面积:S=________圆台上底面面积:S上底=____________ 下底面面积:S下底=____________ 侧面积:S侧=__________表面积:S=________________12.体积公式(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S ,高为h ,则V =______.(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S )h .13.球的表面积公式S= ,体积公式V= ,其中R 为球的半径.题型一:空间几何体的结构1、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( ) A 、至多有一个是直角三角形 B 、至多有两个是直角三角形 C 、可能都是直角三角形 D 、必然都是非直角三角形2、下列判断中正确的个数是( ) ①半圆弧以其直径为轴旋转所成的曲面叫球②空间中到定点的距离等于定长的所有点的集合叫做球面 ③球面和球是同一个概念④经过球面上不同的两点只能作一个最大的圆 A 、1 B 、2 C 、3 D 、43、一个圆台的母线长为12cm ,两底面面积分别为π4 2cm 和25π 2cm 求 (1)圆台的高(2)截得此圆台的圆锥的母线长4、已知棱锥V-ABC 的底面积是642cm ,平行于底面的截面111C B A 的面积是42cm ,棱锥顶点V 在截面和底面上的射影分别是1O 、O ,过O O 1的三等分点作平行于底面的截面,求各截面的面积题型二、空间几何体的三视图和直观图【例1】用斜二测法画直观图1、画出如图水平放置的等腰梯形的直观图2、如图为一个平面图形的直观图,画出它的实际形状3、已知一个正四棱台的上底面边长为2cm,下底面边长为6cm,高为4cm,用斜二测画法画出此正四棱台的直观图4、一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3cm,高为4cm,圆锥的高为3cm,画出此几何体的直观图。
第一章空间几何体(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE -A'B'C'D'E'或用对角线的端点字母,如五棱柱AD' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P-A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P-A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
《空间几何体》全章复习与巩固【学习目标】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图.(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.【知识网络】【要点梳理】要点一.空间几何体的结构及其三视图和直观图(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台.2.旋转体的结构特征旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴.圆柱图椎要点二.空间几何体的三视图和直观图1.空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中%轴.y轴.z轴两两垂直,直观图中,%,轴.y'轴的夹角为45。
(或135。
), z‘轴与%‘轴和y '轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行、平行于l轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半.3.平行投影与中心投影平行投影的投影线互相平行,而中心投影的投影线相交于一点.要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形.要点三.空间几何体的表面积和体积1.旋转体的表面积(1)设棱(圆)柱的底面积为乱高为h,则体积丫=Sh;(2)设棱(圆)锥的底面积为S,高为h,则体积丫=3Sh;一. 1 .■ZTTT(3)设棱(圆)台的上.下底面积分别郑',S,高为h,则体积丫=3 (S'+V'S'S + S)h;4(4)设球半径为几则球的体积丫=3 n R3.要点诠释:1.对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.2.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图. 【典型例题】类型一.空间几何体的结构特征例1.一个多边形沿不平行于多边形所在平面的方向平移一段距离可以形成()A.棱锥B.棱柱C.平面D.长方体举一反三:【变式】如图选项中的长方体,由如图的平面图形(其中,若干矩形被涂黑)围成的是()例2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C棱柱与棱锥的组合体D.不能确定举一反三:【变式】一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面)的平面去截这个棱柱,所得截面的形状不可以是()A.等腰三角形B.等腰梯形C.五边形D.正六边形类型二.空间几何体的三视图例3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().举一反三:【变式】已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()则该几何体是()例4.已知一个几何体的三视图如图所示,A.圆柱B.m棱柱C.球D.四棱柱举一反三:【变式1】某几何体的三视图如图所示则该几何体的表面积为(),)其中俯视图是半圆,类型三.几何体的直观图 例5.如图所示 图形的周长是 A . 6 C . 2+3也【变式】用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的%轴和正三角形的一边平行,则这个 正三角形的直观图的面积是 ___ 类型四.空间几何体的表面积与体积例6.有一根长为3ncm 底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并 使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?举一反三:【变式】如图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为 _________ ,圆锥母线长为 ______ .例7.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则 该四棱锥的体积为 _________ .A .正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,则原 ( )B . 8D . 2+2去举一反三:则这个棱锥的体积是( 【变式】一个棱锥的三视图如图所示,A.6 B.12 C.24 D.36。
本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。
知识框架1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积一、考查形式与特点1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三视图和直观图,几何体表面积与体积的计算等。
三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。
2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。
对球中的体积、表面积、球面距离等问题也要进行重点掌握。
3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。
考查空间想象能力及空间模型的构造能力。
二、方法策略1、“化整为零”是本章的基本思想。
将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。
立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。
2、“以直代曲”的思想方法即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。
3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。
三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。
4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体.5、解决问题的重要手段:截、展、拆、拼(1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。
空间几何体的表面积和体积知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球的半径R=64a,内切球的半径r=612a,其半径R∶r=3∶1(a为该正四面体的棱长).诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.4.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π5.(2020·全国Ⅲ卷)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+236.(2020·浙江卷)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.考点一空间几何体的表面积与侧面积1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π2.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3B.6+23C.12+ 3D.12+233.(2021·成都诊断)如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是()A.23π B.324πC.223π D.22π考点二空间几何体的体积角度1简单几何体的体积【例1】(1)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.【训练1】(1)(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.(2)已知某几何体的三视图如图所示,则该几何体的体积为________.角度2不规则几何体的体积【例2】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.【训练2】(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73 B.143C.3D.6考点三多面体与球的切、接问题【例3】(经典母题)(2021·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【迁移】本例中若将“直三棱柱”改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?【训练3】(1)(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(2)(2021·济南质检)已知球O是三棱锥P-ABC的外接球,P A=AB=PB=AC=2,CP=22,点D是PB的中点,且CD=7,则球O的表面积为()A.28π3 B.14π3C.2821π27 D.16π3空间几何体的实际应用“强调应用”也是高考卷命题的指导思想,体现了新课标的“在玩中学,在学中思,在思中得”的崭新理念,既有利于培养考生的探究意识和创新精神,又能够很好地提升考生的数学综合素养,因而成为高考试卷中的一道亮丽的风景线.如全国Ⅲ卷第16题是以学生到工厂劳动实践,利用3D打印技术制作模型为背景创设的与空间几何体的体积有关的问题.考查运用空间几何求解实际问题的能力.【典例】(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为______g.【训练】(2021·潍坊联考)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4 B.9π2,3C.6π,4D.32π3,3A级基础巩固一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.32 3πC.8πD.4π2.(2021·郑州调研)现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为()A.3πB.3π2C.5π2 D.5π3.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.3 2C.1D.3 24.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.3105.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π46.(2020·全国Ⅱ卷)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C.1 D.327.一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为98π,则它的表面积是( )A.92πB.9πC.454πD.544π8.(2021·安庆调研)已知在四面体P ABC 中,P A =4,BC =26,PB =PC =23,P A ⊥平面PBC ,则四面体P ABC 的外接球的表面积是( ) A.160π B.128π C.40π D.32π二、填空题9.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.10.已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.11.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.12.(2021·太原质检)已知圆锥的顶点为S,底面圆周上的两点A、B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.B级能力提升13.(2020·全国Ⅰ卷)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π14.已知四面体ABCD中,AB=AD=BC=DC=BD=5,AC=8,则四面体ABCD的体积为________.15.(2021·贵阳调研)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=3,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=22,则该球的体积为________.16.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.。
空间几何体复习资料一、空间几何体的类型1、多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
常见的多面体有:棱柱、棱锥、棱台2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
常见的旋转体有:圆柱、圆锥、圆台、球3、简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体;一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
简单组合体例1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球例2、下图是由哪个平面图形旋转得到的()A B C D二、几种空间几何体的结构特征1 、棱柱的结构特征(1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
(2)棱柱的分类:棱图1-1 棱柱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 (3)性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; (4)棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 (1)棱锥的定义①棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
②正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
(2)正棱锥的结构特征①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; ②正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 注:正三棱锥是锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。
正三棱锥的性质:1. 底面是等边三角形。
2. 侧面是三个全等的等腰三角形。
3. 顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形 底面是四边形 A BC D POH对棱间的距离为a 22(正方体的边长) 正四面体的高a 36(正方体体对角线l 32=) 正四面体的体积为3122a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征(1)棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。
(2)正棱台的结构特征:①各侧棱相等,各侧面都是全等的等腰梯形;②正棱台的两个底面和平行于底面的截面都是正多边形; ③正棱台的对角面也是等腰梯形; ④各侧棱的延长线交于一点。
4 、圆柱的结构特征(1)圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
(2)圆柱的性质:①上、下底及平行于底面的截面都是等圆; ②过轴的截面(轴截面)是全等的矩形。
(3)圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。
S 侧=2πr ∙lAB=2πrrr l lAB(4)圆柱的面积和体积公式S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2V 圆柱 = S 底h = πr 2h 5、圆锥的结构特征(1)圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。
(2)圆锥的结构特征:①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ②轴截面是等腰三角形;③母线的平方等于底面半径与高的平方和: l 2= r 2+ h 2(3)圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
A L θ∙l (注:扇形的弧长等于圆心角乘以半径.提醒圆心角为弧度角,例如60° π3弧度,45° π4弧度,90° π2弧度等等)圆锥的侧面展开图是扇形,扇形面积S 扇形 12 弧长 半径的长图中:扇形的半径长为l ,圆心角为θ,弧AB θll l h rBV6、圆台的结构特征(1)圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。
(2)圆台的结构特征:①圆台的上下底面和平行于底面的截面都是圆; ②圆台的截面是等腰梯形;③圆台经常补成圆锥,然后利用相似三角形进行研究。
(3)圆台的面积和体积公式O 2O 1h lr R图1-5 圆锥S圆台侧 = π·(R + r)·l (r、R为上下底面半径)S圆台全 = π·r2 + π·R2 + π·(R + r)·lV圆台 = 1/3 (π r2 + π R2 + π r R) h (h为圆台的高)7、球的结构特征(1)球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。
空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。
(2)球的结构特征:①球心与截面圆心的连线垂直于截面;②截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2(3)球与其他多面体的组合体的问题:球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:①根据题意,确定是内接还是外切,画出立体图形;②找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;③将立体问题转化为平面几何中圆与多边形的问题;④注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。
(4)球的面积和体积公式:S球面 = 4 π R2 (R为球半径)V 球 = 4/3 π R3结构特征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.例1、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形 例2、下面多面体是五面体的是( )A 三棱锥B 三棱柱C 四棱柱D 五棱锥 例3、下列说法错误的是( )A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成 例4、下面多面体中有12条棱的是( ) A 四棱柱 B 四棱锥 C 五棱锥 D 五棱柱例5、在三棱锥的四个面中,直角三角形最多可有几个( ) A 1 个 B 2 个 C 3个 D 4个例6、一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为___________ cm.三、空间几何体的表面积和体积 1、空间几何体的表面积:棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2Srl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24SR π=扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 2、空间几何体的体积: 柱体的体积 :VS h =⨯底锥体的体积 :13V S h =⨯底台体的体积 : 1)3V S S h =++⨯下上(球体的体积:343V R π=例1、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )Aππ221+ B ππ441+ C ππ21+ D ππ241+例2、已知圆锥的母线长为8,底面圆周长为π6,则它的体积是( )A π559B 955C π553D 553例3、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( )A 2B 2.5C 5D 10例4、若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:3例5、如图,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,P 是A 1B 1上一点, 且PB 1=41A 1B 1,则多面体P-BCC 1B 1的体积为( ) A 38 B 316C 4D 16 例6、两个平行于圆锥底面的平面将圆锥的高分成相等的三部分,则圆锥被分成的三部分的体积的比是( )A 1:2:3B 1:7:19C 3:4:5D 1:9:27 例7、如图,一个三棱锥,底面ABC 为正三角形,侧棱SA =SB =SC =1,030=∠ASB ,M 、N 分别为棱SB 和SC 上的点,求AMN ∆的周长的最小值。
CABDP A 1B 1C 1D 1 MS四、空间几何体的三视图和直观图 1、三视图:把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。