三角形内角和证明汇总
- 格式:ppt
- 大小:4.71 MB
- 文档页数:1
三角形内角和定理证明
三角形内角和定理是几何学中一个重要的定理,该定理在三角形中描述了三个内角之和为180°。
该定理有很多不同的证明方法,而在本文中,我们将使用向量方法来证明三角形内角和定理。
证明:
假设有ABC三角形,由OA、OB、OC分别表示三边AB 、BC、CA所对应的单位向量,则有:
OA+OB+OC=0
推导:假设OA和OB的夹角为θ ,OA和OC的夹角为φ。
记角度A=|OA,OB|,C=|OC,OA|,以及B=|OB,OC|,
根据内积公式有:
OA·OB = |OA|. |OB|cosθ
代入上式:
OA·OB + OC·OA + OB·OC=(|OA|. |OB| + |OB|. |OC| + |OC|. |OA|)cosθ cosφ cos(180°-θ-φ)
结合此处弦长恒等于两边之和(a²=b²+c²-2bc·cosA):
结论:由上述推导,OA+OB+OC=0,即A+B+C=180°。
三角形内角和180°证明方法1.如图,证明∠B+∠C+∠BAC=180°证明:过A点作DE∥BC∵DE∥BC∴∠B=∠DAB,∠C=∠EAC(两直线平行,内错角相等)∵D,A,E三点共线∴∠DAE=180°∵∠DAE=∠DAB+∠BAC+∠CAE∴∠DAB+∠BAC+∠CAE=180°∴∠B+∠C+∠BAC=180°2.如图,证明:∠B+∠A+∠ACB=180°证明:过C点作CD∥AB,延长BC交CD于C∵CD∥AB∴∠A=∠ACD(两直线平行,内错角相等)∠B=∠DCE(两直线平行,同位角相等)∵B,C,E三点共线∴∠BCE=180°∵∠BCE=∠ACB+∠ACD+∠DCE∴∠ACB+∠ACD+∠DCE=180°∴∠A+∠B+∠ACB=180°3.如图,证明:∠C+∠BAC+∠B=180°证明:过A点作AD∥BC∵AD∥BC∴∠C=∠ADC(两直线平行,内错角相等)CBDB CDEA∠DAC+∠B=180°(两直线平行,同旁内角互补) ∵∠DAC=∠DAC+∠CAB ∴∠DAC+∠CAB+∠B=180° ∵∠C=∠ADC∴∠C+∠CAB+∠B=180°4.如图,证明:∠BAC+∠C+∠B=180°证明:过A 点作DE ∥BC ,延长AC 、BC 交DE 于A 点∵DE ∥BC∴∠C=∠FDA ,∠B=∠GAE (两直线平行,同位角相等) ∵D,A,E 三点共线 ∴∠DAE=180°∵∠DAE=∠DFA+∠FAG+∠GAE ∴∠DFA+∠FAG+∠GAE=180° ∵·∠GAE=∠BAC (对顶角相等) ∴∠BAC+∠C+∠B=180°5.如图,证明:∠A+∠C+∠B=180° 证明:作直线DE ∥AC ,FE ∥AB 交BC 于E∵DE ∥AC∴∠AFE+∠DEF=180°(两直线平行,同旁内角互补) ∠C=∠DEB (两直线平行,同位角相等) ∵FE ∥AB∴∠AFE+∠A=180°(两直线平行,同旁内角互补) ∠B=∠FEC (两直线平行,同位角相等) ∴∠A=∠DEFBCBCFGBAC E∵B,C,E三点共线∴∠BCE=180°∵∠BCE=∠DEB+∠DEF+∠FEC∴∠DEB+∠DEF+∠FEC =180°∴∠A+∠C+∠B=180°6.如图,证明:∠A+∠B+∠C=180°证明:作DE∥AC,FG∥AB,MN∥BC,都交于点O∵DE∥AC∴∠AFO+∠FOD=180°(两直线平行,同旁内角互补)∵FG∥AB∴∠AFO+∠A=180°(两直线平行,同旁内角互补)∴∠A=∠FOD∵MN∥BC∴∠C=∠FNO∵DE∥AC∴∠FNO=∠DOM(两直线平行,同位角相等)∴∠C=∠DOM∵MN∥BC∴∠B=∠DMO(两直线平行,同位角相等)∵FG∥AB∴∠DMO=∠FON(两直线平行,同位角相等)∴∠B=∠FNO∵M,O,N三点共线∴∠MON=180°∵∠MON=∠DOM+∠DOF+∠FON BCGE∴∠DOF+∠DOM+∠FON=180° ∴∠A+∠B+∠C=180°7. 如图,证明:∠BAC+∠CBA+∠ACB=180° 证明:作DE ∥AC ,FG ∥AB ,MN ∥BC ,都交于点O延长AC 交FG 于点K ,延长AB 到点L ,延长BC 交FG 于点P∵ MN ∥BC∴∠ABC=∠AHN ,∠ACB=∠ANM (两直线平行,同位角相等) ∵ AB ∥FG∴∠AHN=∠FON ,∠BAC=∠AKO (两直线平行,同位角相等)∴∠ABC=∠FON ∵ DE ∥AC ∴∠ANM=∠DOM(两直线平行,同位角相等) ∠OKA=∠DOF(两直线平行,内错角相等) ∴∠ACB=∠DOM ∵ FG ∥AB∴∠BAC=∠OKA (两直线平行,同位角相等) ∴∠BAC=∠DOF ∵ M,O,N 三点共线 ∴∠MON=180°∵∠MON=∠DOM+∠DOF+∠FON ∴∠DOM+∠DOF+∠FON=180° ∴∠BAC+∠CBA+∠ACB=180°CB EFGP。
三角形内角和定理的证明方法
三角形内角和定理又被称为三角形内角的性质,它是指任意三角形的三个内角和等于180度。
证明方法如下:
1. 画出任意三角形ABC,并且在三角形的一边AC上取一点D。
2. 连接BD。
3. 分别求解△ABC和△DBC的三角形内角和。
3.1 对于△ABC,我们知道∠ABC+∠BAC+∠CAB=180度。
3.2 对于△DBC,根据三角形内角和定理,我们知道
∠DBC+∠BDC+∠DCB=180度。
4. 观察△ABC和△DBC的两个内角和中的两个角,即∠ABC 和∠BDC,它们是重叠的,即∠ABC=∠BDC。
5. 将等式∠ABC+∠BAC+∠CAB=180度代入等式
∠DBC+∠BDC+∠DCB=180度,得到
∠BDC+∠BAC+∠CAB=180度。
6. 根据等式∠BDC+∠BAC+∠CAB=180度,我们得到△ABC 和△DBC的三个内角和相等。
7. 根据三角形内角和定理,我们可以得知任意三角形的三个内角和等于180度。
综上所述,这是三角形内角和定理的证明方法。
整理三角形内角和定理的证明方法嘿,咱今儿就来聊聊三角形内角和定理的证明方法,这可有意思啦!
你想想看,三角形那三个角,它们加起来到底为啥就是 180 度呢?
这就好像一个神秘的谜团等着我们去解开。
第一种方法呢,就像是搭积木一样。
我们可以画一个三角形,然后
延长它的一边,再通过平行线的魔力,就能发现一些奇妙的角度关系,顺藤摸瓜就证明出来啦!你说神奇不神奇?
还有一种方法呢,就像是变魔术。
把三角形的三个角剪下来,然后
拼在一起,嘿,你猜怎么着,就拼成了一个平角,那不就正好 180 度嘛!这就像把分散的力量一下子聚集起来了。
再有一种方法,是通过几何图形的巧妙构造。
就好像是建筑师在搭
建一个特别的建筑,用各种线条和角度的组合来证明这个定理。
这需
要我们有一双善于发现的眼睛和灵活的思维,就像在迷宫中找到正确
的道路一样刺激!
咱说三角形内角和定理,那可是几何学里的宝贝呀!它就像一把钥匙,能打开好多知识的大门。
以后遇到和三角形有关的问题,咱就可
以拿出这个定理来,就像将军拿出宝剑一样威风!
你说要是没有这个定理,那我们对三角形的理解得少多少乐趣呀!
它就像星星一样,在数学的天空中闪闪发光。
整理这些证明方法,就像是在整理一个宝藏箱,每一种方法都是一
颗璀璨的宝石。
我们可以慢慢欣赏,慢慢琢磨,感受数学的魅力。
这就是三角形内角和定理的证明方法,是不是很有趣呀?它们就像
是一个个小精灵,在数学的世界里跳跃,等待着我们去发现和探索呢!。
三角形内角和180°证明方法1. 如图,证明/ B+Z C+Z BAC=180 证明:过A点作DE// BC••• DE// BC•••Z B=Z DAB Z C=Z EAC(两直线平行,内错角相等)••• D,A,E三点共线•Z DAE=180vZ DAE Z DAB Z BAC+Z CAE•Z DAB Z BAC+Z CAE=180•Z B+Z C+Z BAC=1802. 如图,证明:Z B+Z A+Z ACB=180证明:过C点作CD// AB,延长BC交CD于 Cv CD// AB•Z A=Z ACD(两直线平行,内错角相等)ZB=Z DCE(两直线平行,同位角相等)v B,C,E三点共线•Z BCE=180vZ BCE Z ACB Z ACD Z DCE•Z ACB Z ACD Z DCE=180•Z A+Z B+Z ACB=1803. 如图,证明:Z C+Z BAC Z B=180°证明:过A点作AD// BCv AD// BC•Z C=Z ADC(两直线平行,内错角相等)Z DAC Z B=180°(两直线平行,同旁内角互补)vZ DAC Z DAC Z CAB• Z DAC Z CAB Z B=180°vZ C=Z ADC•Z C+Z CAB Z B=180°4. 如图,证明:Z BAC Z C+Z B=180°证明:过A点作DE// BC,延长AC BC交DE于A点v DE// BC•Z C=Z FDA Z B=Z GAE(两直线平行,同位角相等)v D,A,E三点共线•Z DAE=180vZ DAE Z DFA Z FAG Z GAE•Z DFA+Z FAG Z GAE=180 v・Z GAE Z BAC(对顶角相等)•Z BAC Z C+Z B=180°5. 如图,证明:Z A+Z C+Z B=180°EEA证明:作直线DE// AC FE// AB交BC于 EA•••DE// AC•••/ AFE+Z DEF=180 (两直线平行,同旁内角互补)/ C=Z DEB(两直线平行,同位角相等)•FE// AB•••/ AFE+/ A=180°(两直线平行,同旁内角互补)Z B=Z FEC(两直线平行,同位角相等)•••/ A=Z DEF•B,C,E三点共线•••Z BCE=180•Z BCE Z DEB Z DEF Z FEC•Z DEB Z DEF Z FEC =180°•Z A+Z C+Z B=180°6. 如图,证明:Z A+Z B+Z C=180 证明:作DE// AC, FG// AB MN/ BC,都交于点O•DE// AC•Z AFO Z FOD=180 (两直线平行,同旁内角互补)•FG// AB•Z AFO Z A=180°(两直线平行,同旁内角互补)•Z A=Z FOD•MN/ BC•Z C=Z FNO(两直线平行,同位角相等)•DE// AC•Z FNO Z DO(两直线平行,同位角相等)•Z C=Z DOM•MN/ BC•Z B=Z DM(两直线平行,同位角相等)•FG// AB•Z DMO Z FON(两直线平行,同位角相等)•Z B=Z FNO•M,O,N三点共线•Z MON=180•Z MON Z DOM Z DOF Z FON•Z DOF Z DOM Z FON=180•Z A+Z B+Z C=1807. 如图,证明:Z BAC Z CBA Z ACB=180证明:作DE// AC, FG// AB MN/ BC,都交于点O延长AC交FG于点K,延长AB到点L,延长BC交FG于点P• MN// BC•Z ABC Z AHN Z ACB Z ANM(两直线平行,同位角相等)•AB // FG•Z AHN Z FON Z BAC Z AKO(两直线平行,同位角相等)•••/ ABC=/ FON••• DE// AC •••/ ANM N DOM(两直线平行,同位角相等)/ OKA N DOF(两直线平行,内错角相等)•••N ACB N DOM••• FG// AB•/ BAC N OKA(两直线平行,同位角相等)•N BAC N DOF••• M,O,N三点共线•N MON=18°vZ MON N DOM N DOF N FON•/ DOM N DOF N FON=180•N BAC N CBA N ACB=180A。
三角形的内角和与外角和关系(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和1.三角形内角和定理:三角形的内角和为180°.2.结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据.另外,在证明角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .∵ AB ∥CD (已作),∴ ∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∵∠ACB+∠1+∠2=180°(平角定义),∴∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .∵DF ∥AC (已作),∴∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).∵DE ∥AB (已作).∴∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).∴∠A=∠2(等量代换).又∵∠1+∠2+∠3=180°(平角定义),∴∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,∵1l ∥3l (已作).∴∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又∵1l ∥2l (已作),∴∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).∴∠5+∠2+∠6+∠3=180°(等量代换).又∵∠2+∠3=∠ACB ,∴∠BAC+∠ABC+∠ACB=180°(等量代换).【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C =180°就可以求出∠A ,∠B 和∠C 的度数.【答案与解析】解:由∠A+∠B =80°及∠A+∠B+∠C =180°,知∠C =100°.又∵ ∠C =2∠B ,∴ ∠B =50°.∴ ∠A =80°-∠B =80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C =180°.本题可以设∠B =x ,则∠A =80°-x ,∠C =2x 建立方程求解.【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图 ,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于()A、40°B、65°C、75°D、115°【答案】B【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°类型三、三角形的内角、外角综合4.如图所示,已知DE分别交△ABC的边AB、AC于D、E,交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【思路点拨】要求∠BDF的度数,应从三角形内角和与三角形的外角出发,若将∠BDF看成△BDF的内角,只需求∠F的度数即可.【答案与解析】解:∵∠CEF=∠AED=48°,∠BCA=∠CEF+∠F,∴∠F=∠BCA-∠CEF=74°-48°=26°,∴∠BDF=180°-∠B-∠F=180°-67°-26°=87°.【总结升华】三角形内角和与外角是进行与角有关的计算或证明的重要工具,本题也可将∠BDF看成△ADE的外角来求解.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG;理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB,∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°,又∵∠4=∠1+∠2,∴∠4+∠3=90°,又∵ PG⊥BC,∴∠3+∠5=90°,∴∠4=∠5,即∠BPD=∠CPG.。
三角形内角和证明方法三角形内角和是指三角形的三个内角的度数之和,它是三角形最基本的性质之一。
在本文中,我们将介绍一些关于三角形内角和的证明方法。
1.我们可以使用三角形内角和定理来证明三角形内角和的性质。
根据该定理,三角形的内角和等于180度。
证明方法:假设ABC是一个三角形,我们可以作三角形的外接圆O。
连接AO,BO,CO,以及连接AO与BC的垂线OD。
根据外接圆的性质,AO的长度等于半径R,而R为定值。
又因为AO与OD相交,所以AO的垂足D到外接圆的距离等于OD的长度。
由于OD与BC垂直,并且是BC的中线,所以OD的长度等于BC的一半,即OD=BC/2。
根据三角形ABC的内角和定理,∠A+∠B+∠C=180度,而∠A和∠B是三角形的两个锐角,它们可以理解为AO和BO在三角形内角A和B上的倒影,所以∠A和∠B的和等于AO和BO的倒影两个角之和,即∠A+∠B=∠DOA+∠DOB。
同理,∠B+∠C=∠BOC+∠BOA,∠C+∠A=∠COA+∠COD。
因为∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD=360度,而∠A+∠B+∠C=180度,所以∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD-∠A-∠B-∠C=360度-180度=180度。
同理∠DOA+∠COA=180度-∠A-∠C,∠DOB+∠BOA=180度-∠A-∠B,∠BOC+∠COD=180度-∠B-∠C。
将上述等式代入∠A+∠B+∠C=180度,得到:(180度-∠A-∠C)+(180度-∠A-∠B)+(180度-∠B-∠C)=180度。
化简上述等式,可以得到3*180度-2*(∠A+∠B+∠C)=180度,即3*180度=2*(∠A+∠B+∠C),进一步化简为∠A+∠B+∠C=180度。
证明完毕。
2.另一种证明三角形内角和的方法是使用拓扑学中的欧拉公式。
根据欧拉公式,一个简单多边形的顶点数、边数和面数之间存在着一个关系。
三角形的内角和证明方法1三角形的定义三角形是一个平面图形,由三条线段连接的三个点组成的图形。
三条线段称为三角形的边,连接边的点称为三角形的顶点。
2三角形的内角和三角形的内角和是指三角形内部三个角的角度之和。
在任何三角形中,内角之和总是等于180度(π弧度)。
3三角形内角和的证明方法一种简单的证明三角形内角和等于180度的方法是使用平行线切割定理。
1.从三角形的一个顶点开始,将一条线段作为其中一条边,该线段与另外两边相交于两个点。
2.以顶点为圆心,构造一个小圆,使得该圆与线段相切于顶点,并与另外两边相交于两个点。
3.连接这两个点,构造一条直线,平行于线段。
4.做垂线,将三角形分成两个三角形,一个内角为α,一个内角为β。
5.根据平行线切割定理,α和β相等。
6.重复上述过程,将三角形分成三个三角形。
7.根据平行线切割定理,内角之和等于180度。
4三角形内角和的另一种证明方法另一种证明三角形内角和等于180度的方法是使用三角形的面积。
1.以三角形的一个顶点为圆心,作一个圆。
2.连接圆心与另外两个顶点,形成两个角。
这两个角的度数x和y之和等于360度。
3.构造三角形的高,使之垂直于底边。
4.三角形的面积等于底边乘以高的一半。
5.将三角形旋转180度,使高所在的线段与底边重合。
6.三角形的面积等于底边乘以高的一半。
7.根据三角形的面积公式,两次求得的面积相等,所以底边乘以高的一半也相等。
8.三角形的高可以表示为底边的三角函数(正弦或余弦)。
9.将高表示为底边的三角函数并代入底边乘以高的一半的公式,得到影子公式。
10.影子公式中的角度之和等于180度。
5结论通过平行线切割定理和三角形的面积公式,我们可以证明三角形的内角和等于180度。
这个结论对于解决三角形几何问题非常有用,因为它可以用作许多三角形定理的基础。
三角形内角和证明汇总三角形是平面几何中最简单的多边形之一,它由三条边和三个内角组成。
在这篇文章中,我将汇总三角形内角和的证明,包括三角形内角和等于180度以及其他有关三角形内角和的性质证明。
1.三角形内角和等于180度:三角形的内角和等于180度是三角形基本性质之一、我们可以通过以下两种证明方法证明这个结论。
方法一:利用平行线和内错角的性质证明。
假设ABC是一个三角形,根据平行线和内错角的性质,我们可以得出以下结论:∠ABC+∠BCD=180度同样地,我们可以得到以下两个等式:∠ABC+∠ACB=180度∠BCD+∠ACB=180度综上所述,我们可以得出:∠ABC+∠BCD+∠ACB=180度方法二:利用三角形的外角和等于360度证明。
我们知道一个三角形的外角和等于360度。
假设ABC是一个三角形,由于∠ABC是外角,所以有:∠ABC+∠ACB=180度同样地,我们可以得到以下等式:∠ABC+∠BCD=180度∠ACB+∠BCD=180度综上所述,我们可以得出:∠ABC+∠BCD+∠ACB=180度2.三角形内角和的其他性质:除了内角和等于180度之外,三角形的内角和还具有其他一些性质。
以下是一些相关的证明:性质一:三角形的一个内角大于另外两个内角之和。
假设ABC是一个三角形,我们可以利用反证法证明这个性质。
假设∠ABC<∠ACB+∠BCA。
由于∠ABC是一个内角,所以可以得到以下不等式:∠ABC+∠ACB+∠BCA<∠ACB+∠BCA+∠BCA经简化得:∠ABC+∠ACB+∠BCA<2∠ACB+2∠BCA由于∠ABC<∠ACB+∠BCA,所以2∠ABC<2∠ACB+2∠BCA。
因此,根据三角形内角和等于180度的性质,我们可以得出∠ABC+∠ACB+∠BCA>180度,与假设相矛盾。
综上所述,结论成立。
性质二:三角形的两个内角之和小于180度。
假设ABC是一个三角形,我们可以利用反证法证明这个性质。