声学基础声波的基本性质基本声学量
- 格式:pptx
- 大小:523.14 KB
- 文档页数:78
p 声学基础_声波1. 声波的产生∙ 声音来源于物体的振动,凡能产生声音的振动特征统称为声源。
∙ 声源振动时,会引起周围弹性媒质,即空气分子的振动。
这些振动的空气分子又会使其周围的空气分子产生振动。
因此,声源产生的振动即以声波的形式向外传播。
∙ 声音在空气中传播时只能发生压缩和膨胀,空气质点的振动方向与声波的传播方向一致,所以空气中的声波是纵波。
∙ 将质点振动方向与声波传播方向相垂直的波称为横纵。
∙ 声波在液体中的传播一般也是纵波,但在固体中的传播则既有纵波也有横波。
Tips :▪ 声波不能在真空中传播,因为在真空中不存在能够产生振动的弹性媒质。
▪ 声波是通过相邻质点间的动量传递,而非物质上的迁移来传播能量。
2 声波物理量2.1 声压∙ 声源振动进,邻近的空气分子受到交替的压缩和扩张,因而在声波传播过程中空气分子时疏时密。
∙ 当某一部分空气变密时,这部分的空气压强会比平衡状态下的大气压大; 当某一部分的空气变疏时,这部分的压强会比平衡状态下的大气压强小,从而在声波传播过程中空间各处的压强起伏变化。
∙ 空间某处压强与平衡状态下的大气压强的差,称为声压,记为 ,单位为帕(斯卡),211/Pa N m =。
即,声波导致的压强波动是叠加在大气压 0P 之上的: Tips :▪ 测量的声压是变化的声压与大气压强之差,声压变化的平均值为0,所以平均声压不是一个有用的参量,而人耳对瞬时声压波动也没有响应。
▪ 人耳对动压声压的均方值有响应,且平均响应时间间隔约为35ms 。
2.2 声速• 声波在空气媒质中的传播速度称为声速,记为c ,单位为米每秒(m/s )。
• 声波传播速度由热力学公式决定:c =式中,r 为介质常数。
对于空气,287.05/()r J kg K = ;R 为比热比,对于空气,取 1.402R =;T 为开尔文温度,273.15o T t c =+;当空气温度20o t c =时,343/c m s =。
管道声学入门知识点总结一、管道声学基础知识1. 声波的基本概念声波是一种机械波,属于纵波。
声波的传播需要介质,它通过介质的震动来传播能量。
声波的基本特性包括频率、波长、声速等。
2. 声压、声强和声级声压是声波引起的介质内部的压力变化,单位为帕斯卡(Pa)。
声强是单位面积内传播的声波功率,单位为瓦特/平方米。
声级是声音的强度,以分贝(dB)为单位。
3. 管道声学基本原理管道中的声波传播是一种复杂的声学现象。
管道中的声波传播受到管道内部介质的影响,包括管道材质、形状、尺寸等因素的影响。
二、管道声学数学模型1. 管道声波方程管道中的声波传播符合一维波动方程,包括声波的时间和空间变化。
波动方程描述了声波在管道中的传播规律,是管道声学研究的基础数学模型。
2. 管道声学参数管道声学参数包括声阻抗、声导纳、声透射系数等。
这些参数用于描述管道中声波的传播特性,是管道声学研究的重要数学工具。
3. 声波的反射和透射管道中的声波在遇到管道的壁面时会发生反射和透射。
反射和透射的特性受到管道几何形状和材质的影响,是管道声学研究的重点内容。
三、管道声学实验方法1. 管道声学测量管道声学测量方法包括实验室测量和现场测量两种。
实验室测量通常采用声学测试仪器对管道中的声音进行测量和分析;现场测量通常采用声学传感器和数据采集系统对实际工程管道中声波进行测量。
2. 管道声学模拟管道声学模拟是一种通过计算机技术对管道中声波传播进行模拟和分析的方法。
通过建立管道声波传播的数学模型,可以对管道声学特性进行定量分析和预测。
3. 管道声学试验验证管道声学试验验证是一种通过实验来验证管道声学模型的方法。
通过对实际管道进行声学试验,可以验证管道声学模型的准确性和可靠性。
四、管道声学在工程应用中的意义1. 管道噪声控制石油化工、航空航天、交通运输等工程领域中,管道噪声是一个常见的问题。
通过管道声学研究,可以对管道进行噪声控制,减少对环境和人体健康的影响。
fundamentals of acoustics中文版-回复点击[这里]( of acoustics中文版》原文。
引言:《fundamentals of acoustics中文版》是一本介绍声学基础知识的重要书籍。
本文将一步一步回答关于这本书的相关问题,帮助读者更好地了解声学的基础知识。
第一步:导论(Introduction)《fundamentals of acoustics中文版》的导论部分主要介绍了声学研究的背景和应用,以及声学的基本概念和研究方法。
声学是研究声音的传播、产生、接收和效果的学科,它涉及到物理学、工程学、心理学、计算机科学等多个学科的知识与方法。
第二步:声波的基本性质(Basic properties of sound waves)声波是一种机械波,通过物质传播的机械振动。
声波的主要性质包括频率、振幅、波长和速度。
频率是声波振动的频率,单位是赫兹;振幅是声波的强度,通常用分贝表示;波长是声波在介质中传播一个完整周期所需的距离,单位是米;速度是声波在介质中传播的速度,通常与介质的密度和刚度有关。
第三步:声学传感器(Acoustic sensors)声学传感器是一种用于测量和检测声波的设备。
常见的声学传感器包括麦克风、声纳和超声波传感器。
它们可以将声波转化为电信号或其他形式的信号,以便进一步处理和分析。
第四步:声音的感知和人类听觉(Perception of sound and human hearing)声音的感知是指人类对声波的接受和理解过程。
人类听觉是一种非常复杂的生理和心理过程,涉及到外耳、中耳、内耳和大脑的多个部分。
人类能够感知不同频率和振幅的声音,并且对声音的方向和位置有一定的判断能力。
第五步:声音的传播(Propagation of sound)声音通过振动的介质传播,主要通过压缩和稀疏的机制来传播。
声音传播的常见现象包括衍射、折射、干涉和多次反射。
声音的传播速度取决于介质的特性,例如空气中声速约为343米/秒。
本《声学基础》考试⼤纲适⽤于中国科学院研究⽣院声学等专业的硕⼠研究⽣⼊学考试。
声学是物理学的⼀个分⽀,主要研究与声有关的各种现象,包括⼈⽿不能听到的超声波和次声,声学基础是与声学各个分⽀学科的基础,是与声相关的研究和应⽤的基础课程。
要求考⽣掌握声学基相关的机械振动的基本概念与基本运算,并具有⼀定的灵活应⽤的能⼒。
⼀、考试内容
(⼀)简单振⼦的振动
1.简单振⼦的概念,运动⽅程和规律;
2.⾃由振动、衰减振动和受迫振动的概念;
3.共振频率的计算;
4.振动能量及转化的概念和计算。
(⼆)弹性体的振动
1.⽆限长弦的振动⽅程和解;
2.两端固定的弦的共振频率;
3.模式的概念;
4.棒的横振动、膜和板的振动概念。
(三)声波的基本性质
1.线形声波⽅程的基本假设和推导;
2.平⾯波的基本性质,声压级和声强级的概念;
3.平⾯声波在平⾯界⾯上反射和折射的研究⽅法,⼀般规律;
(四)管道和房间中的声波
1.声波导中模式的概念,频散现象;
2.房间中声场的模式;
3.混响时间的概念和计算;
(五)声波的辐射
1.球⾯波的基本性质;
2.辐射阻抗的概念;
3.偶极源的辐射。
⼆、主要参考书⽬
声学基础(第2版),杜功焕、朱哲民、龚秀芬著,南京⼤学出版社(2001年)。
物理基础第一节声波的定义及分类一、定义物体的机械性振动在具有质点和弹性的媒介中的传播现象称为波动,而引起听觉器官有声音感觉的波动则称为声波。
根据声波的传导方向与介质的的振动方向的关系,声波有纵波和横波之分。
二、横波所谓横波是指介质中的质点都垂直于传播方向运动的波。
人体的骨骼中,不但传播纵波,还传播横波。
三、纵波即介质中质点沿传播方向运动的波。
在纵波通过的区域内,介质各点发生周期性的疏密变化,因此纵波是胀缩波。
理想流体(气体和液体)中声振动传播方向与质点振动方向是平行的,只存在于纵波。
人体中含水70—80%,故除骨路、肺部以外软组织中的声速和密度均接近于水。
目前医用超声的研究和应用主要是纵波传播方式。
第二节超声显像物理基础一、超声波基本物理量1、超声波是声源振动的频率大于20000 Hz的声波。
2、超声波有三个基本物理量,即频率(f),波长(λ),声速(c),它们的关系是:c=f·λ或λ=c/f,传播超声波的媒介物质叫做介质,不同频率的超声波在相同介质中传播时,声速基本相同。
3、相同频率的超声波在不同介质中传播,声速不相同,人体软组织中超声波速度总体差异约为5%。
因此目前医用超声仪一般将软组织声速的平均值定为1541m/s。
通过该声速可测量软组织的厚度,由于目前超声仪所采用的是脉冲回声法,故该回声测距的公式是:t组织厚度=C·───2利用超声方法进行测距的误差也是5%左右。
4、声阻抗是用来表示介质传播超声波能力的一个重要的物理量,其数值的大小由介质密度ρ与声波在该介质中的传播速度c的乘积所决定,即:Z=ρ·c单位为Kg/m2·s。
5.临床常用的超声频率在2~10 MHz之间。
二、超声波的物理性能l、超声波在介质中传播时,遇到不同声阻的分界面且界面厚度远大于波长,会产生反射,反射的能量由反射系数R I=〔(Z2-Z1)/(Z2+Z1)〕2决定。
Z1、Z2为两种介质的特性声阻抗,Z=ρ·c (密度·声速)当Z1=Z2,为均匀介质,则RI=0,无反射。
声波的基础特性与应用声波是一种机械波,是由物质的震动传播而产生的波动现象。
声波在空气、水、固体等介质中传播,是人类日常生活中不可或缺的一部分。
本文将介绍声波的基础特性以及其在各个领域中的应用。
### 声波的基础特性声波是一种纵波,其传播方向与振动方向一致。
声波的传播速度取决于介质的性质,一般在空气中的传播速度约为343米/秒。
声波的频率决定了声音的音调,频率越高,音调越高。
而声波的振幅则决定了声音的大小,振幅越大,声音越响亮。
声波的传播遵循波动方程,可以用以下公式表示:$$v = f \times \lambda$$其中,$v$表示声波的传播速度,$f$表示声波的频率,$\lambda$表示声波的波长。
声波的波长与频率成反比关系,频率越高,波长越短。
### 声波在医学领域的应用在医学领域,声波被广泛应用于超声波检查和超声波治疗。
超声波检查利用声波在人体组织中的传播特性,通过探头发射声波并接收回波来获取人体内部器官的影像,用于诊断疾病。
超声波治疗则利用声波的机械作用,对人体组织进行治疗,如碎石治疗、肿瘤消融等。
### 声波在通信领域的应用在通信领域,声波被应用于声纹识别技术。
声纹识别是一种生物特征识别技术,通过分析个体的声音特征来进行身份识别。
声波在此过程中起到传输和识别信息的作用,具有较高的安全性和准确性。
### 声波在工业领域的应用在工业领域,声波被应用于无损检测技术。
超声波无损检测是利用声波在材料中传播的特性,通过检测声波的传播时间和回波强度来判断材料内部是否存在缺陷,如裂纹、气孔等。
这种技术可以帮助工程师及时发现材料缺陷,确保产品质量。
### 声波在生活中的应用除了以上领域,声波在生活中还有许多其他应用。
例如,声波在音响系统中的应用,使人们能够享受高品质的音乐和影视体验;声波在声纳系统中的应用,用于水下通信和探测;声波在声波清洗中的应用,可以去除物体表面的污垢等。
总的来说,声波作为一种重要的机械波,在各个领域都有着广泛的应用。