有理数乘法分配律
- 格式:doc
- 大小:85.00 KB
- 文档页数:2
《有理数的乘法》说课稿《有理数的乘法》说课稿1一、说教材:(一)地位、作用:本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。
有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率3、能运用乘法运算律简化运算,进一步提高学生的运算能力(三)重点、难点:运用乘法的运算律进行乘法运算运用乘法法则和乘法运算律进行运算二、说教学方法:根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。
教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教材程序:第一步现在用我们所学的知识,大家解一下这几道题:6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
乘法的交换律:两个数相乘,交换因式的位置,积不变。
ab=ba第二步现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。
有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
第14课时 有理数乘法运算律字母表示:a (b +c +d +e +f +…z )=ab +ac +ad +ae +af +…az1.有理数的乘法交换律 【例1】(﹣4)××0.25的计算结果是(). A .﹣ B . C . D .﹣ 总结: 乘法交换律可以改变乘法运算的运算顺序,单独使用乘法交换律的运算不多. 一般,三个有理数相乘,其中有两个可以约分或乘积为整数的时候,使用交换律交换位置相乘可以简便计算过程. 三个以上的有理数相乘,交换律和结合律同时使用可以使运算简便. 注意:运用乘法交换律时,要带着有理数前面的符号一起交换,尤其是负号不能丢. 练1.式子××5=×5×,这里应用了( ). A .分配律 B .乘法交换律 C .乘法结合律 D .乘法的性质 2.有理数的乘法结合律 【例2】计算:-33×0.5×(-2.5)×0.4. 13总结:运用乘法结合律要优先结合具有以下特征的因数: ①互为倒数; ②乘积为整数或便于约分的因数. 练2.计算:(﹣4)×1.25×(﹣8). 练3.在计算4×(﹣7)×(﹣5)=(4×5)×7中,运用了乘法的( ) A .交换律 B .结合律 C .分配律 D .交换律和结合律 3.有理数的乘法分配律 【例3】计算的结果是( )A .﹣B .0C .1D .总结:乘法分配律揭示了加法和乘法的运算性质,利用它可以简化有理数的运算,对于乘法分配律,不仅要会正向应用,而且要会逆向应用,有时还要构造条件变形后再用,以求简便、迅速、准确解答习题.练4.计算时,运用( )可以使运算简便.A .乘法交换律B .乘法结合律C .乘法分配律D .加法结合律练5.简便运算:29×(﹣12).4.乘法运算律的综合应用【例4】计算:.总结:运用乘法运算律可以简化有理数乘法运算.乘法交换律和乘法结合律要灵活、综合地运用,两者相得益彰.根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换因数的位置,也可以先把其中的几个数相乘.运用乘法交换律和结合律的目的,是把容易计算的几个因数先进行计算.应用乘法分配律可以打破“先算括号”的计算习惯,简化乘法与加法的运算.练6.上面运算没有用到( )A .乘法结合律B .乘法交换律C .分配律D .乘法交换律和结合律练7.式子(﹣+)×4×25=(﹣+)×100=50﹣30+40中用的运算律是( ) A .乘法交换律及乘法结合律 B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律一、选择题211513+0.68+13+0.343737⨯⨯⨯⨯1.计算:(﹣8)××0.125=()A.﹣ B. C. D.﹣2.(﹣4)×(﹣3.9)×(﹣25)的计算结果是()A.﹣390 B.390 C.39 D.﹣393.算式﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了()A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法分配律4.(•台湾)计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.5001二、填空题5.在等式中,应用的运算律有和.6.计算:99×(﹣5)= .7.计算:78×(﹣)+(﹣11)×(﹣)+(﹣33)×= .8.计算:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣)= .三、解答题9.计算:﹣3.14×35.2+6.28×(﹣23.2)﹣1.57×36.8.10.计算:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102).11..【例1】计算:(﹣4)××0.25=( )A .﹣B .C .D .﹣解答:解:原式=(﹣4)×0.25×=﹣1×=﹣,故选:A .点评:本题考查了有理数的乘法,乘法交换律是解题关键,注意运算符号.【例2】计算:-33×0.5×(-2.5)×0.4. 解:原式=××(×) = =16.【例3】计算的结果是( )A .﹣B .0C .1D .分析:原式利用乘法分配律计算即可得到结果.解答:解:原式=﹣×﹣×﹣×(﹣) =﹣1﹣2+=﹣.故选A .点评:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.【例4】计算:. 解:原式= = 13100312522550323211513+0.68+13+0.343737⨯⨯⨯⨯212513+13+0.34+0.343377⨯⨯⨯⨯212513++0.34+3377⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=13.34.练习答案:练1.式子××5=×5×这里应用了()A.乘法分配律 B.乘法交换律 C.乘法结合律 D.乘法的性质分析:根据有理数的乘法运算定律解答即可.解答:解:××5=×5×应用了乘法交换律.故选B.点评:本题考查了有理数的乘法,是基础题,熟记乘法运算定律是解题的关键.练2.计算:(﹣4)×1.25×(﹣8).分析:将后两项结合,再进行乘法运算.解答:解:原式=﹣×[1.25×(﹣8)]=.点评:本题考查了有理数的乘法,在进行分式的乘法运算时,注意将带分数化为假分数的形式.练3.在计算4×(﹣7)×(﹣5)=(4×5)×7中,运用了乘法的()A.交换律 B.结合律 C.分配律 D.交换律和结合律分析:4×(﹣7)×(﹣5)变成(4×5)×7,先交换了﹣7和﹣5的位置,再把后两个数相乘,就是运用了乘法交换律和结合律.解答:解:4×(﹣7)×(﹣5)=4×(﹣5)×(﹣7)(乘法交换律)=(4×5)×7.(乘法结合律)所以计算4×(﹣7)×(﹣5)=(4×5)×7运用的定律是乘法交换律和乘法结合律.故选D.点评:考查了有理数的乘法,解决本题关键是熟练掌握乘法的有关运算定律.练4.计算时,可以使运算简便的是运用()A.乘法交换律 B.乘法结合律 C.乘法分配律 D.加法结合律分析:24的因数有4,12,8,3,6,所以用乘法分配律.解答:解:∵=﹣×(﹣24)+×(﹣24)﹣×(﹣24)+×(﹣24)=18﹣2+15﹣20.∴问题转化为整数的运算,使计算简便.故选C.点评:乘法的分配律:a(b+c)=ab+ac,可以使计算过程简单,不易出错.练5.简便运算:29×(﹣12)分析:根据乘法分配律,可得答案.解答:解;原式=(30﹣)×(﹣12)=30×(﹣12)+×12=﹣360+=﹣359.点评:本题考查了有理数的乘法,利用了有理数的乘法分配律.练6.上面运算没有用到()A.乘法结合律B.乘法交换律C.分配律D.乘法交换律和结合律分析:根据乘法运算法则分别判断得出即可.解答:解:∵,∴运算中用到了乘法结合律以及乘法交换律,没用到分配律.故选:C.点评:此题主要考查了乘法运算法则的应用,熟练掌握运算法则是解题关键.练7.式子(﹣+)×4×25=(﹣+)×100=50﹣30+40中用的运算律是()A.乘法交换律及乘法结合律B.乘法交换律及分配律C.加法结合律及分配律D.乘法结合律及分配律分析:根据乘法运算的几种规律,结合题意即可作出判断.解答:解:运算过程中,先运用了乘法结合律,然后运用了乘法分配律.故选D.点评:本题考查了有理数的乘法运算,注意掌握乘法运算的几种规律.课后小测答案:1.计算:(﹣8)××0.125=()A.﹣B.C.D.﹣解:(﹣8)××0.125,=(﹣8)×0.125×,=﹣1×,=﹣.故选A.2.(﹣4)×(﹣3.9)×(﹣25)的计算结果是()A.﹣390B.390C.39D.﹣39解:(﹣4)×(﹣3.9)×(﹣25)=(﹣4)×(﹣25)×(﹣3.9)=100×(﹣3.9)=﹣390.故选A.3.算式﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了()A.加法交换律B.乘法交换律C.乘法结合律D.乘法分配律解:﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了乘法分配律,故选:D.4.(•台湾)计算(﹣1000)×(5﹣10)之值为何?()A.1000B.1001C.4999D.5001解:原式=﹣(1000+)×(﹣5)=(1000+)×5=1000×5+×5=5000+1=5001.故选D.5.在等式中,应用的运算律有交换律和结合律.解:第一步计算中,(﹣)和(﹣8)交换了位置,运用了交换律;第二步计算中,先计算1.25×(﹣8),运用了结合律.答:应用的运算律有交换律和结合律.6.计算:99×(﹣5)= ﹣499.解:原式=99×(﹣5)+×(﹣5)=﹣495﹣=﹣499.7.计算:78×(﹣)+(﹣11)×(﹣)+(﹣33)×= ﹣60 .解:78×(﹣)+(﹣11)×(﹣)+(﹣33)×=78×(﹣)+(﹣11)×(﹣)+33×(﹣)=﹣×(78﹣11+33)=﹣×100=﹣60,故填:﹣60.8.计算:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣)= 0 .解:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣),=(﹣)×(﹣3.59﹣2.41+6),=(﹣)×0,=0.故答案为:0.9.计算:﹣3.14×35.2+6.28×(﹣23.2)﹣1.57×36.8.解:原式=﹣3.14×35.2+(﹣3.14)×46.4+(﹣3.14)×18.4=﹣3.14×(35.2+46.4+18.4)=﹣3.14×90=﹣282.6.10.计算:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102).解:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102)=﹣×1×2×3×4﹣×(2×3×4×5﹣1×2×3×4)﹣(3×4×5×6﹣2×3×4×5)﹣…﹣(100×101×102×103﹣99×100×101×102)=﹣(1×2×3×4+2×3×4×5﹣1×2×3×4+3×4×5×6﹣2×3×4×5+…+100×101×102×103﹣99×100×101×102)=﹣×100×101×102×103=﹣26527650.11..解:原式==﹣(10+1+20)×1=﹣31.。
七年级数学师生共用导学案 备课时间:10月7 日 上课时间:10月8日 班级 姓名
§2.9.3有理数乘法的运算律(第二课时)
导学目标:
1.探索有理数乘法的分配律,熟练掌握有理数的乘法法则。
2.灵活运用乘法运算律进行有理数的乘法运算,使计算简便。
导学准备
1.几个不等于零的有理数相乘,如何确定积的正负号?
2.计算:
(1)(–85)×(-25)×(-4) (2)(-2.5)×(+4)-(+1.25)×3.14×(-8)
导学过程
(一)问题引入
上节课我们已经探索了乘法的交换律、结合律对任意有理数的乘法仍适合,今天我们来探索乘法分配律。
在小学里利用乘法分配律有:6 ×(21+3
1)= = 引进了负数以后,分配律是否仍成立?
(二)探索
1、计算并比较下列每组算式的结果:(每小题2分)
(1)(–5)×[(-2)+(-3)]=(-5)× =
(-5)×(-2)+ (-5)×(-3)= + =
(2)(-30)×(21+3
1)=(-30)× = (-30)×2
1+(-30)×31= + = 发现:每组结果都 ,这就是说,小学学过的乘法分配律对有理数乘法仍 。
2、观察分析1题,完成下列填空:
乘法分配律律:一个数与两个数的和相乘,等于把这个数分别与这两个数 ,再把积 。
用式子可表示为:a(b+c)=
点拨:根据乘法分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加,使计算简便。
3、例题示范,初步运用
例4 计算(1)30×(21-32+5
2) (2) 4.98×(-5)
例5 (1)43×(8-34-1514) (2)8×(-52)-(-4)×(-92)+(-8)×5
3
点拨:从以上4小题可以看出,适当应用运算律,可使运算简便,有时需要先把算式变形,才能用分配律。
有时也可以反向运用分配律。
计算:(-8)×(-1173)+(-7)×(-1173)+(-15)×117
3
小试牛刀
1.(-8)×(-12)×(-0.125)×(-31 )×(-0.1) 2、60×(1-21-31-4
1)
测评与达标
1、计算(34-6
1+121)×12时,可以使运算简便的是( ) A 、加法交换律 B 、乘法交换律 C 、乘法结合律 D 、乘法分配律
2、下列计算中,正确的是( )
A 、(-12)×(31-41-1)=-4+3+1=0
B 、(-12)×(31-4
1-1)=-4-3-12=-19 C 、(-18)×〔-(-2
1)〕=9 D 、(-5)×2×︳-2︱=-20 3、运用运算律计算:
(1)(31-75-52) ×105 (2) 96
5×6
(3)18×(-
32)+13×32-4×32 (4)9936
35×(-18)
(5)60×73-60×71+60×75。