随机过程例题(课堂PPT)
- 格式:ppt
- 大小:903.00 KB
- 文档页数:27
随机过程_课件---第三章第三章随机过程3.1 随机过程的基本概念1、随机过程定义3-1 设(),,F P Ω是给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,F P Ω上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}tX ω,{}tX 或(){}X t 。
注:随机过程(){,:,}X t t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间是()00,,t T X t ω∈是概率空间(),,F P Ω上的随机变量;对于给定样本点()00,,X t ωω∈Ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。
E 称为随机过程的相空间,也成为状态空间,通常用""t X x =表示t X 处于状态x 。
2、随机过程分类:随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续随机序列、离散随机序列。
3、有穷维分布函数定义3-2 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,nt tX X 构成n 维随机向量()1,,n t t XX ,其n 维联合分布函数为:()()11,,11,,,,nnt t nt t nF x x P X x Xx ≤≤其n 维联合密度函数记为()1,,1,,n t tn f x x 。
我们称(){}1,,11,,:1,,,nt t n n Fx x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。
3.2 随机过程的数字特征1、数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==?()t E X 是时间t 的函数。
2、方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差。
随机过程_课件---第四章第四章 Poisson 过程4.1 齐次Poisson 过程到达时间间隔与等待时间的分布1、定理4-1强度为λ的齐次Poisson 过程{,0}t N t≥的到达时间间隔序列{},1,2,n X n = 是独立同分布的随机变量序列,且是具有相同均值1λ的指数分布。
证:事件{}1X t >发生当且仅当Poisson 过程在区间[]0,t 内没有事件发生,即事件{}1X t >等价于{0}tN =,所以有()(0)t t t P X t P N e λ->===因此,1X 具有均值为1λ的指数分布,再求已知1X 的条件下,2X 的分布。
(](](]211(|)(|)((0tP X t X s P X s P P e λ->====在s,s+t 内没有事件发生(由独立增量性)在s,s+t 内没有事件发生)(由平稳增量性)在,t 内没有事件发生)上式表明2X 与1X 相互独立,而且2X 也是一个具有均值为1λ的指数分布的随机变量,重复同样的推导可以证明定理4-1的结论。
2、定理4-2等待时间n S 服从参数为n ,λ的Γ分布,即分布密度为1()(),(1)!n tt f t e n λλλ--=- 0t ≥证:因为第n 个事件在时刻t 或之前发生当且仅当到时间t 已发生的事件数目至少是n ,即事件{}{}t n N n S t ≥?≤是等价的,因此()()()!j tn t j nt P S t P N n ej λλ∞-=≤=≥=∑上式两边对t 求导得n S 的分布密度为11()()()!(1)!(),0(1)!j j tt j nj nn tt t f t e e j j t et n λλλλλλλλλ-∞∞--==--=-+-=≥-∑∑注:定理4-2又给出了定义Poisson 过程的另一种方法。
从一列均值为1/λ的独立同分布的指数随机变量序列{},1n X n ≥出发,定义第n 个事件发生的时刻为n S ,则12n n S X X X =+++这样就定义了一个计数过程,且所得计数过程{},0t N t ≥就是参数为λ的Poisson 过程。