用加减法解二元一次方程组
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
用加减法解二元一次方程组引言解方程是数学中最基本的操作之一,可以用来求解未知数的值。
在代数中,二元一次方程组是由两个未知数及其对应的系数和常数项组成的方程组。
解二元一次方程组的一种常用方法是使用加减法。
什么是加减法解法加减法解法也被称为消元法,是通过对方程组进行加减操作,使其中一个未知数的系数相等或相反,从而进行消去,最终求解出另一个未知数的值,并将其代入原方程组解得另一个未知数的值。
解题步骤以一个简单的二元一次方程组为例进行步骤说明:假设有以下二元一次方程组:2x + 3y = 54x - 2y = 10步骤如下: 1. 选择两个方程,使用加减法消除一个未知数的系数。
通常选取两个系数的绝对值相等或相反的方程。
在本例中,我们选择第一个方程和第二个方程的第一个系数(2和4)来进行消去操作。
将第一个方程乘以2,得到:4x + 6y = 10然后将第二个方程和上述结果相减,得到:(4x - 2y) - (4x + 6y) = 10 - 10 -8y = 02.消元后得到一个只包含一个未知数的方程,即-8y = 0。
解这个方程得到y 的值。
根据以上方程,可以求得y = 0。
3.将y的值代入原方程组中的一个方程,求解出x的值。
选取第一个方程2x + 3y = 5,代入y = 0,得到:2x + 3 * 0 = 52x = 5x = 5 / 2解题结果根据以上步骤,得到了以下解题结果:x = 2.5y = 0总结加减法解二元一次方程组是一种常用的解法,通过对方程组进行加减操作,可以逐步消除未知数的系数,最终求解出未知数的值。
使用这种方法需要选择合适的方程进行消去,以便简化计算过程并得到正确的结果。
希望本文对你解决二元一次方程组问题有所帮助。
注意:以上所给方程仅作为示例。
在实际解题中,可能会遇到更复杂的方程组,需要采用更多的消元操作和计算步骤来求解。
《加减法解二元一次方程组》教学反思〔通用5篇〕《加减法解二元一次方程组》教学反思〔通用5篇〕《加减法解二元一次方程组》教学反思1本节课是加减法解二元一次方程组的第2课时,是在学习过直接采用加减消元法解二元一次方程组的根底上,来进一步解决较复杂的二元一次方程组的求解问题的。
我应用“先学后教,当堂训练”的教学形式,对教学过程精心设计,创设情境,复习设疑,引发兴趣;提出问题,学生讨论,分散难点;自主学习与小组互动、合作学习相结合,培养学生观察才能、合作意识和探究精神;以学生自学、互学为主,把课堂还给了学生,面向全体,促进课堂动态生成,让学生全面开展,课堂教学生命化,获得了良好的课堂效果,得到了教研组听课老师的好评。
但其中也有一些缺乏。
优点:1、组内帮扶作用发挥的突出。
虽然大家都知道加减消元法,但有些同学不太明确怎样变形成可直接加减的形式,而通过组内帮扶,正好能帮助老师分散解决个别问题,从而大大进步了这节课的课堂效率。
2、易错点强调的较好〔这是听课老师的评价〕。
在用减法消元时,学生最容易出错的地方是减数位置是一个整体,应该每一项都变号,所以在学生展示时,我让他写出了减的详细过程,也要求大家本节课做题时也要这么做,这样就减少了错误发生的概率。
缺乏:1、课前复习提问不到位。
本节课要继续研究加减消元的方法,在课前我只简单的提问了可直接采用加减消元的条件及如何加减消元,但从学生做题的过程来看,学生更容易在对方程的等价变形中出错,即利用方程的简单变形,两边同时乘以同一个数,学生往往忽略等式右边的常数项,不过,这一点我在课堂教学中提醒了一下,所以在以后的备课中我还要更细致些,多从学生的角度出发考虑他们的易错点。
2、加减法解二元一次方程组的一般步骤出示时间有点早。
我是在学生“先学”环节中引导学生总结得出,课后认为在“后教”环节的“更正”、“讨论”后让学生自己归纳出,更能表达追求以人的开展为本的“生命化课堂”教育新理念。
[数学教案-用加减法解二元一次方程组]教学建议 1.教材分析(1)知识结构(2)重点、难点分析重点:本小节的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用.这种方法同样是解三元一次方程组和某些二元二次方程组的基本方法,在教学中必须引起足够重视. 难点:灵活运用加减法的技巧,以便将方程变形为比较简单和计算比较简便,这也要通过一定数量的练习来解决. 2.教法建议(1)本节是通过一个引例,介绍了加减法解方程组的基本思想和解题过程.教学时,要引导学生观察这个方程组中未知数系数的特点.通过观察让学生说出,在两个方程中y的系数互为相反数或在两个方程中x的系数相等,让学生自己动脑想一想,怎么消元比较简便,然后引出加减消元法. (2)讲完加减法后,课本通过三个例题加以巩固,这三个例题是由浅入深的,讲解时也要先让学生观察每个方程组未知数系数的特点,然后让学生说出每个方程组的解法,例题1老师自己板书,剩下的两个例题让学生上黑板板书,然后老师点评. (3)讲解完本节后,教师应引导学生比较代入法与加减法这两种方法,这两种方法虽有不同,但实质都是消元,即通过消去一个未知数,把“二元”转化为“一元”.也就是说:这时学生对解题方法比较熟悉,但还没有上升到理论的高度,这时教师应及时点拨、渗透化归转化的思想,并指出这是具有普遍意义的分析问题、解决问题的思想方法.教学设计示例(第一课时)一、素质教育目标(一)知识教学点 1.使学生掌握用加减法解二元一次方程组的步骤. 2.能运用加减法解二元一次方程组.(二)能力训练点 1.培养学生分析问题、解决问题的能力. 2.训练学生的运算技巧.(三)德育渗透点消元,化未知为已知的转化思想.(四)美育渗透点渗透化归的数学美.二、学法引导 1.教学方法:谈话法、讨论法. 2.学生学法:观察各未知量前面系数的特征,只要将相同未知量前的系数化为绝对值相等的值后即可利用加减法进行消元,同时在运算中注意归纳解题的技巧和解题的方法.三、重点、难点、疑点及解决办法(-)重点使学生学会用加减法解二元一次方程组.(二)难点灵活运用加减消元法的技巧.(三)疑点如何“消元”,把“二元”转化为“一元”.(四)解决办法只要将相同未知量前的系数化为绝对值相等的值即可利用加减法进行消元.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计 1.教师通过复习上节课代入法解二元一次方程组的方法及其解题思想,引入除了消元法还有其他方法吗?从而导入新课即加减法解二元一次方程组. 2.通过引例进一步让学生探究是用代入法还是用加减法解方程组更简单,让学生进一步明确用加减法解题的优越性. 3.通过反复的训练、归纳、再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.七、教学步骤(-)明确目标本节课通过复习代入法从而引入另一种消元的办法,即加减法解二元一次方程组.(二)整体感知加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元.故在教学中应反复教会学生观察并抓住解题的特征及办法从而方便解题.(三)教学过程 1.创设情境,复习导入(1)用代入法解二元一次方程组的基本思想是什么?(2)用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第(1)题,在练习本上完成第(2)题,一个同学说出结果.上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其他方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容.【教法说明】由练习导入新课,既复习了旧知识,又引出了新课题,教学过程中还可以进行代入法和加减法的对比,训练学生根据题目的特点选取适当的方法解题. 2.探索新知,讲授新课第(2)题的两个方程中,未知数的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解.解:①+②,得把代入①,得∴∴学生活动:比较用这种方法得到的、值是否与用代入法得到的相同.(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了.观察一下,的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去?(相减)学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)我们将原方程组的两个方程相加或相减,把“二元”化成了“一元”,从而得到了方程组的解.像这种解二元一次方程组的方法叫加减消元法,简称“加减法”.提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)【教法说明】这几个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性.例 1 解方程组哪个未知数的系数有特点?(的系数相等)把这两个方程怎样变化可以消去?(相减)学生活动:回答问题后,独立完成例1,一个学生板演.解:①-②,得∴把代入②,得∴∴∴(1)检验一下,所得结果是否正确?(2)用②-①可以消掉吗?(可以)是用①-②,还是用②-①计算比较简单?(①-②简单)(3)把代入①,的值是多少?(),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)练习:P23 l.(l)(2)(3),分组练习,并把学生的解题过程在投影仪上显示.小结:用加减法解二元一次方程组的条件是某个未知数的系数绝对值相等.例2 解方程组(1)上面的方程组是否符合用加减法消元的条件?(不符合)(2)如何转化可使某个未知数系数的绝对值相等?(①×2或②×3)归纳:如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元.学生活动:独立解题,并把一名学生解题过程在投影仪上显示.学生活动:总结用加减法解二元一次方程组的步骤.①变形,使某个未知数的系数绝对值相等.②加减消元.③解一元一次方程.④代入得另一个未知数的值,从而得方程组的解. 3.尝试反馈,巩固知识练习:P23 1.(4)(5).【教法说明】通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力. 4.变式训练,培养能力(1)选择:二元一次方程组的解是() A. B. C. D.(2)已知,求、的值.学生活动:第(1)题口答,第(2)题在练习本上完成.【教法说明】第(1)题可以用解方程组的方法得解,也可以把四组值分别代入原方程组中,利用检验的方法解,这道题能训练学生思维的灵活性;第(2)题通过分析,学生可得方程组从而求得、的值.此题可以培养学生分析问题,解决问题的综合能力.(四)总结、扩展 1.用加减法解二元一次方程组的思想: 2.用加减法解二元一次方程组的条件:某一未知数系数绝对值相等. 3.用加减法解二元一次方程组的步骤:八、布置作业(一)必做题:P24 1.(二)选做题:P25 B组1.(三)预习:下节课内容.参考答案(一)(1)(2)(3)(4)(二)1.(1)与(4)(2)与(3)数学教案-用加减法解二元一次方程组。
加减消元法解二元一次方程组教案加减消元法解二元一次方程组教案「篇一」二元一次方程组的解法(加减消元法)说课稿尊敬的各位老师,各位同学:大家好!我今天说课的题目是《二元一次方程组的解法》,选自沪教版九年义务教育课本六年级下册第六章第九节,本节两个课时,我今天阐述的是第二课时,用加减消元法解二元一次方程组。
下面我将从教材分析、教法分析、学法分析、教学过程及教学评价等几个方面进行阐述。
一、教材分析1、教材的地位和作用本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的研究与学习,我把本节课的三维教学目标确定如下:知识与技能目标:会用加减消元法解简单的二元一次方程组;理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,同时体会到数学与日常生活的密切联系,认识到数学的价值。
3、教学重、难点由于六年级的学生年龄较小,在学习解二元一次方程组的过程中往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下: 重点:用加减消元法解决二元一次方程组难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想为讲清楚重、难点,让学生达到本节设定的目标,我再从教法学法上谈谈。
二、教法分析考虑到学生已经掌握了用代入消元法解二元一次方程组,懂得其基本思路是把二元一次方程组转化为一元一次方程。
解二元一次方程的四种方法解二元一次方程是数学中经常遇到的问题,只涉及二元(两个)未知数的方程叫做二元一次方程,其通式为ax+b=0,例如:2x+1=0。
要求一个方程未知数的值,可以采用四种方法来解这种方程:一、根据加减法法则,把未知数及其数字、变量等统一到同一边,想办法消去另一边的未知数或变量,从而求得未知数的值。
如:2x+3=8,将等号右边8减去等号左边的3,得到x=(8-3)/2=5/2。
二、因为分母不能为零,所以要在最初就用不等式的方法判断方程的未知数的取值范围,再根据所取值范围,再求解未知数的值。
如:(1-x)/x>1,将不等式的左边的分子乘以x得x-x²>1x,再消去x后,得1>x²,由上式我们可以得出x的取值范围为x<-1和x>1.三、因式分解是一种比较简单的求解方法,把一个复杂式,按未知数加减乘除以及因子之间的关系,拆分为各个因子,分解各个式子,然后把式子分解成两个简单式,最后求解未知数。
如:6x-3(x-1)=18,先把等号两边同乘以3,则有18x-3x²+3=54,再把等号两边同除以3,得到6x-x²+1=18,因式分解,则有(6x-1)*(x+1)=18,将有(6x-1)=18,得到x=3。
四、如果二元一次方程的俩未知数为有理数,可以用图像法求解,利用坐标系(x轴和y轴),如:2x-y=4,可以画出y=2x-4的图象,再从它的交点推出未知数的值,最后得到x=2,y=4。
总之,解决二元一次方程有很多种方法,但这四种是最重要且最常用的方法。
它们可以帮助我们清楚、高效地求解二元一次方程,使我们掌握这些基本的解方程技巧。