Fundamentals of Power Electronics Kg法设计变压器
- 格式:pdf
- 大小:2.12 MB
- 文档页数:42
Proposal Design 方案设计[prəˈpəʊzl] Layout Design 布局设计Module Design 模块设计[ˈmɒdju:l] Parallel Design 并行设计[ˈpærəlel] Optimizing Design 优化设计['ɒptɪmaɪzɪŋ] Mechanical Design 机械设计Software Design 软件设计Top-Down Design 自顶向下设计Error-Proofing Design 防错设计['pru:fɪŋ] Feasibility 可行性[ˌfi:zə'bɪlətɪ]Plan 计划FMEA 失效模式分析Ergonomic 人机工程学[ˌɜ:gəˈnɒmɪk] Human Machine Interface 人机交互界面Schedule 进度表ˈʃedju:l]Safeguard 安全防护Cycle Time 生产节拍Technique Process 工艺流程英[tekˈni:k] [ˈprəʊses]Sequence 顺序[ˈsi:kwəns] Mechanism 机构[ˈmekənɪzəm] Structure 结构System 系统Orbit 轨迹[ˈɔ:bɪt]PDM 产品数据管理PLM 产品生命周期管理3D Drawing 三维图2D Drawing 二维图Part Drawing 零件图Assembly Drawing 装配图[əˈsembli] Bill of Material 材料清单(BOM)Cost Down 降低成本Qualified Part 合格品ˈkwɒlɪfaɪd] Rejected Part 不合格品[rɪˈdʒekt] Confirm 确认kənˈfɜ:m]Check 审核Approve 批准Flow Line 流水线Conveyor 传输装置[kənˈveɪə(r)] Orientation 定向[ɔ:riənˈteɪʃn] Location 定位Picking 抓取Sorting 排序Pallet 随行夹具[ˈpælət]Fixture 固定夹具Gripper 抓取夹具['grɪpə]Feeding 进给Loading 上料Offloading 卸料Machining 加工Manufacture 制造[ˌmænjuˈfæktʃə(r)]Assemble 装配[əˈsembl]Run 运行Dry Run 设备空运行Patent 专利[ˈpætnt]Automated inspection 自动化检验automatic assembly system 自动化装配系统applied biomechanics 应用生物力学CAD/CAM 计算机辅助设计与制造computer integrated manufacturing system 计算机整合制造系统data structure 数据结构data base management system 数据库管理系统decision analysis 决策分析engineering economy 工程经济engineering statistics 工程统计facilities planning 设施规划factory diagnoisis and improvement method 工厂诊断与改善方法financial and cost analysis 财务与成本分析fuzzy theory and application 模糊理论与应用human-computer interaction (HCI)人因工程与计算机系统human factors engineering 人因工程human information processing 人类讯息处理human-machine system design 人机系统设计human resource management 人力资源管理human system diagnosis and improvement 人体系统诊断与改善industrial environment evaluation 工业环境评估industrial organizations and management 工业组织与管理industrial safety 工业安全information technology 信息技术intellectual property laws 智慧财产权法knowledge engineering 知识工程linear algebra 线性代数manufacturing automation 制造自动化manufacturing engineering 制造工程manufacturing management 制造管理manufacturing process 制造程序manufacturing systems and management 制造系统与管理market and marketing 市场与行销material flows automation 物流自动化mathematical programming 数学规划multicriteria decision making 多目标规划multi-criteria decision methods 多准则决策分析network analysis 网络分析numerical analysis 数值分析organization and management 组织与管理product and technology development management 产品与技术开发管理production management 生产管理production planning and control 生产计划与管制quality control 质量管理quality engineering 品质工程quality management techniques and practice 品质管理queueing theory 等候线理论reliability engineering 可靠度工程research,development and innovation management 研究发展管理semiconductor production management 半导体生产管理sequencing and scheduling 排序与排程simulation 模拟分析statistical method 统计方法stochastic processes 随机系统strategic management of technology 技术策略system analysis and design in large scale 大型系统分析与设计system performance evaluation 系统绩效评估技术system quality assurance engineering 系统品质保证工程systems engineering 系统工程systems simulation 系统仿真vision and colors 视觉与色彩work physiology 工作生理学work study 工作研究集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And DataAcqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface (HMI)工控机——Industrial Personal Computer (IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit (RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation (PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪—— Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——MasterStation/Slave station 操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station电力专业英语单词电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current无功损耗:reactive loss有功损耗:active loss输电系统power transmission system高压侧high side输电线transmission line高压: high voltage低压:low voltage中压:middle voltage功角稳定angle stability 稳定stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC直流DC电网power system落点drop point开关站switch station调节regulation高抗high voltage shunt reactor 并列的:apposable裕度margin故障fault三相故障three phase fault分接头:tap切机generator triping高顶值high limited value静态static (state)动态dynamic (state)机端电压控制AVR电抗reactance电阻resistance功角power angle有功(功率)active power电容器:Capacitor电抗器:Reactor断路器:Breaker电动机:motor功率因数:power-factor定子:stator阻抗电压:阻抗:impedance功角:power-angle电压等级:voltage grade有功负载: active load/PLoad无功负载:reactive load档位:tap position电阻:resistor电抗:reactance电导:conductance电纳:susceptance上限:upper limit下限:lower limit正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance无功(功率)reactive power功率因数power factor无功电流reactive current斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap仿真分析simulation analysis下降率droop rate传递函数transfer function框图block diagram受端receive-side同步synchronization保护断路器circuit breaker摇摆swing阻尼damping无刷直流电机:Brusless DC motor刀闸(隔离开关):Isolator机端generator terminal变电站transformer substation永磁同步电机:Permanent-magnet Synchronism Motor异步电机:Asynchronous Motor三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架double-circuit lines on the same tower单机无穷大系统one machine - infinity bus system励磁电流:magnetizing current 补偿度degree of compensation电磁场Electromagnetic fields失去同步loss of synchronization装机容量installed capacity 无功补偿reactive power compensation故障切除时间fault clearing time极限切除时间critical clearing time强行励磁reinforced excitation并联电容器:shunt capacitor线路补偿器LDC(line drop compensation) 电机学Electrical Machinery自动控制理论Automatic Control Theory电磁场Electromagnetic Field微机原理Principle of Microcomputer电工学Electrotechnics Principle of circuits 电力系统稳态分析Steady-State Analysis of Power System电力系统暂态分析Transient-State Analysis of PowerSystem电力系统继电保护原理Principle of Electrical System's RelayProtection电力系统元件保护原理Protection Principle of Power System 'sElement电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of AnalogueElectronic Technique数字电子技术Digital Electrical Technique 电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project ofelectronics电气工程概论Introduction to electrical engineering电子电机集成系统electronic machine system电力传动与控制Electrical Drive and Control 电力系统继电保护Power System Relaying ProtectionBOX 组件Plastic 塑胶cabinet 壳cover 上盖support 下盖top 上部bottom 底部cap (帽,杯)housing 壳insert(型,芯)Box 组件holder 支座roller 转子belt 皮带impeller风扇case 箱filter 滤网flex hose 软管metal 金属shaft 轴gear 齿轮washer 垫片die cast 铸件nut 螺母bush 轴套chuck 锁头screw 螺丝ring 垫圈spring 弹弓bit 铁嘴plate 片bar 杆spindle轴芯pin 小轴bearing 轴承thread 螺纹powder metal 粉末冶金key 锁匙pinion 小齿轮electric 电气件nameplate 铭牌cord 电线cable 电缆motor 电机switch 开关plug插头fuse 保险丝battery电池button 按钮cell电池adaptor 火牛socket插座P.C.B 电路板charger 充电座/器HI-POT高压测试timer定时器Power pack 电池组resistor电阻IC集成电路terms 术语toque 扭矩force 力speed 速度rating 额定值sampling 抽样fitting 装配futtonal 功能part line分型线aperance 外观testure 纹理vibration 振动finished 表面处理cavity 模腔model 型号part 零件assembly 部件accessory附件remark 注释mark 标记approve 认可defect 缺陷nonconformity 不合格comformity 合格sinkage 缩水burr 毛刺flash 披锋sharp edge 尖缘scratch刮花flow mark 流痕weld line 夹水纹rusty 铸跡hardness 硬度treatment 热处理cycle 循环freouency频数description名称inspection 检验check 检查dispose 处理injection注射revise 更改material 材料purchasing 采购gate 水口current 电流voltage电压power功率I.N.T接触不良rework 加工sort 拣货A.O.D 有偏差接收reject 退货Sketch 简图urgent 紧急Tolerance 公差fit配合Run-out跳动dimention 尺寸AQL 允收水准solenoid valve 电磁阀abort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absolute atmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltage regulator 自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Coil 线圈Coil pipe 蛇形管Cold 冷Cold air 冷风Cold reheater CRH 再热器冷段Cold reserve 冷备用(锅炉)Cold start 冷态启动Cold test 冷态试验Collect 收集Collecting pipe 集水管Collector 收集器Colour 颜色Colour library 颜色库Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Communication 联系、通讯Commutator 换向器Compensation 补偿Electrical machine 电机Electrical service 供电Electric power industry 电力工业Electrode 电极Electric power company 电力公司Electric power system 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaic precipitator 静电除尘器Electrostatic 静电的Extra-high voltage超高压Extend扩展、延伸Exteral外部的、表面的Extr press抽汽压力Extr temp抽汽温度Extraction EXTR抽汽Flexible 灵活的、柔性的Flexible joint 弹性联接器Furnace 炉膛Fuse 保险丝、熔断器Fuse holder 保险盒Fusible cutout 熔断开关Fw bypass 给水旁路GGAIN 增益Gang 班、组Gas 气体、烟气Gate 闸门Gate damper 闸门式挡板Gateway 入口、途径Gauge 仪表、标准Gauge float 水位、指示、浮标Gear 齿轮Gear pump 齿轮泵Gear shift housing 变速箱Gen main breaker 发电机出口总开关General control panel 总控制屏General vlv 总阀Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland heater GLAND HTR 轴封加热器Gland seal 轴封Glass-paper 砂纸Goal 目的、目标Go on 继续Govern vlv GV 调速器、调节器Graphics 调节阀Grease 图形Green 绿色Grid 高压输电网、铅板Grid system 电网系统Performance 完成、执行、性能Performance calculation 性能计算Performance curve 性能曲线Periodic 周期的、循环的Periodic inspection 定期检查Peripheral 周围的Peripheral equipment 外围设备Permanent 永久的、持久的Permanent magneticgenerator永磁发电机Permit 允许Permit to work 允许开工Petrol 汽油Plunger 柱塞、滑阀Plunger pump 柱塞泵Plus 加Plyers 钳子、老虎钳Pneumatic 气动的Point 点Point database 测点数据库Point directory 测点目录Point name 测点名Point record 测点记录Point field 泡克区Phase voltage 相电压Pole 机、柱Policher 除盐装置Pollution 污染Pop valve 安全阀、突开阀Portion 一部分Position POS 位置Positive 确定的、正的、阳性的Potable water 饮用水Potential transformer PT 电压互感器Tank 箱Tap 抽头、分布Tape armour 钢带铠装Taper 锥体、楔销Taper key 斜键、楔键Taper pin 锥形销、斜销Target 目标T-beam 丁字梁Temperature 温度Temperature compensation 温度补偿Temperature liming relay 热继电器Tempered 热处理的Template 模板、样板Tensile 拉力的、张力的Total control unit TCU 总控单元T-junction 三通三、模具注塑模具injection mold 冲压模具Stamping tool 模架mold base定模座板Fixed clamp plate A板A plate B板B plate支承板 support plate 方铁 spacer plate 回位销 Return pin 导柱 Guide pin动模座板Moving clamp plate 顶针ejector pin单腔模具single cavity mold 多腔模具multi-cavity mold 浇口gate合模力clamping force锁模力locking force 开裂crack循环时间cycle time 老化aging 螺杆screw 镶件 Insert 主流道 sprue 分流道runner 浇口gate直浇口 direct gate 点浇口pin-point gate 测浇口edge gate潜伏浇口submarine gate 浇口套sprue bush 流道板runner plate 排气槽vent 分型线(面)parting line 定模Fixed mold 动模movable mold 型腔cavity凹模cavity plate,凸模core plate 斜销angle pin 滑块slide拉料杆sprue puller 定位环locating ring 脱模斜度draft 滑动型芯slide core 螺纹型芯threaded core热流道模具hot-runner mold 熔合纹weld line三板式模具three plate mold 脱模ejection 脱模剂release agent 注射能力shot capacity 注射速率injection rate 注射压力injection pressure 保压时间holding time 闭模时间closing time电加工设备Electron Discharge Machining 数控加工中心CNC machine center 万能铁床Universal milling machine 平面磨床Surface grinding machine万能摇臂钻床Universal radial movable driller立式钻床Vertical driller 倒角chamfer 键Key键槽keyway 间距pitch快速成型模Rapid prototype tool (RPT)四、品管SPC statistic process control品质保证Quality Assurance(QA) 品质控制Quality control(QC) 来料检验IQC Incoming quality control 巡检IPQC In-process quality control 校对calibration环境试验Environmental test 光泽gloss拉伸强度tensile strength 盐雾实验salt spray test 翘曲warp比重specific gravity 疲劳fatigue撕裂强度tear strength 缩痕sink mark 耐久性durability 抽样sampling样品数量sample sizeAQL Acceptable Quality level 批量lot size 抽样计划sampling plan 抗张强度 Tensile Strength 抗折强度 Flexural Strength 硬度 Rigidity色差 Color Difference涂镀层厚度 Coating Thickness 导电性能 Electric Conductivity 粘度 viscosity 附着力 adhesion耐磨 Abrasion resistance 尺寸 Dimension (喷涂)外观问题 Cosmetic issue 不合格品 Non-conforming product 限度样板 Limit sample五、生产注塑机injection machine冲床Punch machine 嵌件注塑 Insert molding双色注塑 Double injection molding 薄壁注塑 Thin wall molding膜内注塑 IMD molding ( In-mold decoration)移印 Tampo printing 丝印 Silk screen printing 热熔 Heat staking超声熔接 Ultrasonic welding (USW)尼龙nylon 黄铜 brass 青铜 bronze 紫(纯)铜 copper 料斗hopper 麻点pit配料compounding 涂层coating 飞边flash 缺料 Short mold 烧焦 Burn mark 缩水 Sink mark 气泡 Bubbles 破裂 Crack熔合线 Welding line 流痕 Flow mark 银条 Silver streak 黑条 Black streak表面光泽不良 Lusterless 表面剥离 Pelling 翘曲变形 Deformation 脏圬 Stain mark 油污 Oil mark蓝黑点 Blue-black mark 顶白 Pin mark 拉伤 Scratch限度样品 Limit sample 最佳样品 Golden sample 预热preheating再生料recycle material 机械手 Robot机器人 Servo robot试生产 Trial run; Pilot run (PR) 量产 mass production 切料头 Degate保质期shelf lifeABC分类法ABC Classification 装配Assembly平均库存Average Inventory 批号Batch Number批量生产Mass Production 提货单Bill of Lading 物料清单Bill of Material 采购员Buyer检查点Check Point 有效日期Date Available 修改日期Date Changed 结束日期Date Closed 截止日期Date Due 生产日期Date in Produced库存调整日期Date Inventory Adjust 作废日期D ate Obsolete 收到日期Date Received 交付日期Date Released 需求日期Date Required需求管理Demand Management 需求Demand工程变更生效日期Engineering Change Effect Date 呆滞材料分析Excess Material Analysis 完全跟踪Full Pegging在制品库存In Process Inventory 投入/产出控制Input/ Output Control 检验标识Inspection ID库存周转率Inventory Carry Rate 准时制生产Just-in-time (JIT) 看板Kanban人工工时Labor Hour最后运输日期Last Shipment Date 提前期Lead Time 负荷Loading仓位代码Location Code 仓位状况Location Status 批量标识Lot ID批量编号Lot Number 批量Lot Size 机器能力Machine Capacity 机器加载Machine Loading制造周期时间Manufacturing Cycle Time 制造资源计划Manufacturing Resource Planning (MRP II) 物料成本Material Cost物料发送和接收Material Issues and Receipts物料需求计划Material Requirements Planning (MRP) 现有库存量On-hand Balance 订单输入Order Entry 零件批次Part Lot零件编号Part Number (P/N) 零件Part领料单Picking List 领料/提货Picking 产品控制Product Control 产品线Production Line采购订单跟踪Purchase Order Tracking 需求量Quantity Demand 毛需求量Quantity Gross 安全库存量Safety Stock 在制品Work in Process 零库存Zero Inventories。
电气自动化专业英文词汇及缩写电力系统 power system沟通 AC阻抗 impedance发电机 generator直流 DC功角 power-angle励磁 excitation电网 power system电压等级 voltage grade励磁器 excitor落点 drop point有功负载 : active load PLoad 电压 voltage开关站 switch station无功负载 reactive load电流 current调理 regulation档位 tap position升压变压器 step-up高抗 high voltage shunt电阻 resistortransformer reactor电抗 reactance母线 bus并列的 apposable电导 conductance变压器 transformer裕度 margin电纳 susceptance空载消耗 no-load loss故障 fault上限 upper limit铁损 iron loss三相故障 three phase fault下限 lower limit铜损 copper loss分接头 tap正序阻抗 positive sequence 空载电流 no-load current切机 generator triping impedance有功消耗 active loss高顶值 high limited value负序阻抗 negative sequence 无功消耗 reactive loss静态 static (state)impedance动向 dynamic (state)零序阻抗 zero sequence输电系统 power机端电压控制 AVR impedancetransmission system电抗 reactance无功(功率) reactive power 高压侧 high side电阻 resistance功率因数 power factor输电线 transmission line功角 power angle无功电流 reactive current高压 high voltage有功(功率) active power斜率 slope低压 low voltage电容器 Capacitor额定 rating中压 middle voltage电抗器 Reactor变比 ratio功角稳固 angle stability断路器 Breaker参照值 reference value稳固 stability电动机 motor电压互感器 PT电压稳固 voltage stability功率因数 power-factor分接头 tap暂态稳固 transient stability定子 stator仿真剖析 simulation analysis 电厂 power plant降落率 droop rate能量输送power transfer传达函数transfer function框图 block diagram励磁电流 Magnetizing受端 receive-side current同步 synchronization赔偿度 degree of保护断路器 circuit breaker compensation摇晃 swing电磁场 :Electromagnetic阻尼 damping fields无刷直流电机 Brusless DC失掉同步 loss ofmotor synchronization刀闸 (隔走开关 ) Isolator装机容量 installed capacity机端 generator terminal无功赔偿 reactive powercompensation变电站 transformer故障切除时间fault clearing substation time永磁同步电机极限切除时间critical Permanent-magnet clearing timeSynchronism Motor强行励磁 reinforced异步电机 Asynchronous excitationMotor并联电容器shunt capacitor<三绕组变压器 three-column降落特征 droop transformer ThrClnTrans characteristics双绕组变压器 double-column线路赔偿器LDC(line drop transformer DblClmnTrans compensation)固定串连电容赔偿fixed电机学 Electrical Machinery series capacitor自动控制理论Automatic compensation Control Theory双回同杆并架 double-circuit电磁场 Electromagneticlines on the same tower Field单机无量大系统one machine微机原理 Principle of- infinity bus system Microcomputer 电工学Electrotechnics电路原理Principle of circuits 电机学Electrical Machinery电力系统稳态分析 Steady-State Analysis of Power System电力系统暂态剖析Transient-State Analysis of Power System电力系统继电保护原理Principle of Electrical System's Relay Protection电力系统元件保护原理 Protection Principle of Power System 's Element电力系统内部过电压Past Voltage within Power system模拟电子技术基础Basis of Analogue Electronic Technique数字电子技术Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程 High voltage带负荷调压变压器开关engineering on-load regulating switch电子专题实践 Topics on transformer按钮experimental project of变压器铁芯buttonelectronics transformer core隔走开关电气工程概论 Introduction变压器线圈isolator,disconnector to electrical engineering transformer coil真空开关电子电机集成系变压器绕组vacuum switch统Electroni transformer winding刀闸开关c machine system变压器油箱knife-switch电力传动与控制 Electrical transformer oil tank接地刀闸Drive and Control变压器外壳earthing knife-switch 电力系统继电保护Power transformer casing电气设施System Relaying Protection变压器电扇electrical equipment 主变压器transformer fan变流器main transformer变压器油枕current converter 升压变压器transformer oil电流互感器step-up transformer conservator( ∽ drum current transformer 降压变压器变压器额定电压电压互感器step-down transformer transformer reted voltage voltage transformer 工作变压器变压器额定电流电源operating transformer transformer reted current power source 备用变压器变压器调压范围沟通电源standby transformer transformer voltage AC power source 公用变压器regulation rage直流电源common transformer配电设施DC power source 三相变压器power distribution工作电源three-phase transformer equipment operating source 单相变压器SF6 断路器备用电源single-phase transformer SF6 circuit breaker Standby source强电遥信合闸脉冲strong current telesignalisation closing pulse弱电遥测一次电压weak current telemetering primary voltage继电器遥调二次电压relay teleregulation secondary voltage 信号继电器断路器并联电容器signal relay breaker,circuit breaker parallel capacitor 电流继电器少油断路器无功赔偿器current relay mini-oil reactive power电压继电器breaker,oil-mini-mum compensation device voltage relay breaker消弧线圈跳闸继电器高频滤波器arc-suppressing coil tripping relay high-frequency filter母线合闸继电器组合滤波器Bus,busbarclosing relay combined filter三角接法中间继电器常开触点delta connection intermediate relay normally opened contaact星形接法时间继电器常闭触点Wye connection time relay normally closed contaact原理图零序电压继电器并联电容schematic diagram zero-sequence voltage parallel capacitance一次系统图relay保护接地primary system diagram 差动继电器protective earthing二次系统图differential relay熔断器secondary system 闭锁装置cutout,fusible cutout diagramlocking device电缆两相短路遥控cable two-phase short circuit telecontrol跳闸脉冲三相短路tripping pulse three-phase short circuit单相接地短路远方控制后备保护single-phase ground short remote control back-up protectioncircuit用电量准时限过电流保护短路电流计算power consumption definite time over-current calculation of short circuit载波protectioncurrent carrier三段式电流保护自动重合闸故障the current protection with automatic reclosing fault three stages高频保护选择性反时限过电流保护high-freqency protection selectivity inverse time over-current 距离保护速动性protectiondistance protection speed方向性电流保护横差保护敏捷性the directional current transverse differential sensitivity protectionprotection靠谱性零序电流保护纵差保护reliability zero-sequence current longitudinal differential电磁型继电器protectionprotection electromagnetic阻抗线路保护无时限电流速断保护impedanceline protection instantaneously微机保护过电压保护over-current protection Microprocessor Protection over-voltage protection跳闸线圈AGC Automatic母差保护trip coilGeneration Control自动bus differential protection工作线圈发电控制瓦斯保护operating coil Buchholtz protection制动线圈变压器保护retraint coil transformer protection主保护AMR Automatic Message Recording自动抄表ASS Automatic Synchronized System自动准同期装置ATS Automatic Transform电动机保护main protectionSystem厂用电源迅速切换motor protection装置AVR Automatic Voltage Regulator自动电压调理器BCS Burner Control System 焚烧器控制系统BMS Burner Management System 焚烧器管理系统CCS Coordinated Control System 协调控制系统CIS ConsumerInformation System用户信息系统CRMS Control Room Management System控制室管理系统CRT Cathode Ray Tube阴极射线管DA DistributionAutomation配电自动化DAS Data Acquisition System数据收集与办理系统DCS Distributed Control System分别控制系统DDC Direct Digital Control直接数字控制(系统)DEH Digital Electronic Hydraulic Control数字电液 (调理系统 )DMS Distribution Management System配电管理系统DPU DistributedProcessing Unit 散布式办理单元DSM Demand Side Management 需求侧管理EMS Energy ManagementSystem能量管理系统ETS Emergency TripSystem汽轮机紧迫跳闸系统EWS EngineeringWorking Station 工程师工作站FA Feeder Automation馈线自动化FCS Fieldbus ControlSystem 现场总线控制系统FSS Fuel Safety System燃料安全系统FSSS Furnace SafeguardSupervisory System 炉膛安全监控系统FTU Feeder Terminal Unit馈线远方终端GIS Gas InsulatedSwitchgear气体绝缘开关设施GPS Global PositionSystem 全世界定位系统HCS HierarchicalControl System 分级控制系统 LCD Liquid CrystalDisplay 液晶显示屏LCP Local Control Panel就地控制柜MCC Motor ControlCenter(电动机)马达控制中心MCS Modulating ControlSystem模拟量控制系统MEH Micro ElectroHydraulic Control System给水泵汽轮机电波控制系统MIS ManagementInformation System 管理信息系统NCS Net Control System网络监控系统OIS Operator InterfaceStation操作员接口站OMS OutageManagement System 停电管理系统 PAS PowerApplication Software 电力应用软件 PID ProportionIntegration Differentiation比率积分微分PIO Process Input Output过程输入输出(通道)PLC ProgrammableLogical Controller可编程逻辑控制器PSS Power SystemStabilizator电力系统稳固器RTU Remote TerminalUnit站内远方终端SA SubstationAutomation变电站自动化SCADA SupervisoryControl And DataAcquisition数据收集与监控系统SCC SupervisoryComputer Control 监察控制系统SCS Sequence ControlSystem 次序 (程序 )控制系统SIS Supervisory Information System监控信息系统TDCS ( TDC ) Total Direct Digital Control集散控制系统TSI Turbine Supervisory Instrumentation汽轮机监测仪表UPS Uninterrupted Power Supply不中断供电WMS Work Management System工作管理系统。
Fundamentals of Electric Circuits 第四版课程设计简介本文档为《Fundamentals of Electric Circuits》(电路基础)第四版课程设计。
本门课程旨在帮助学生掌握电路基本理论及其应用,通过理论学习和实践操作,提高学生的实际动手能力。
本课程面向本科电气工程专业的学生。
课程大纲1.电路基础知识–电路的定义和分类–电路元件和符号的介绍–电压、电流、电功率和电阻的概念–基尔霍夫定律和欧姆定律2.电路分析方法–网孔分析法–节点分析法–简化电路3.交流电路分析–交流电路和信号的概念–正弦波–复数表示–相位角和频率4.电路定理和电路分析技术–电容与电感器件–电压源和电流源–线性电路的等效性原理–电压和电流的缩放定理5.传输线和滤波器–传输线的原理和特性–低通滤波器、高通滤波器和带通滤波器–滤波器网络的设计和分析6.二阶电路和频率响应–二阶电路和其特性–二阶电路的电压和电流响应–二阶电路的频率响应7.三相电力系统–三相电路和相位关系–三相功率和功率因数–三相电力转换器和控制器课程教学方法本课程采取以下教学方法:1.理论课程:通过教师讲解、课件演示、案例分析等方式,让学生掌握电路基本理论及其应用。
2.实验操作课程:通过实验操作,让学生掌握基本电路分析技术和器件的使用方法。
每位学生需要完成多项实验操作并撰写实验报告。
3.课程设计:学生通过指定的课程设计题目,进行电路系统的设计、计算和模拟实现(或实际布线实验)。
学生需要撰写设计报告和汇报课程设计成果。
教材本课程采用以下教材:•Alexander, C. K., & Sadiku, M. N. (2017). Fundamentals of Electric Circuits (5th ed.). McGraw-Hill Education.此外,还需要以下参考书:•Dorf, R. C., & Svoboda, J. A. (2016). Introduction to Electric Circuits (9th ed.). Wiley.课程评估本课程的评估由以下几个部分组成:1.学科考试:一次闭卷笔试,占总评成绩的 50%。
电气专业常用英语词汇电气专业常用英语词汇发电机 generator 励磁 excitation励磁器 excitor电压 voltage电流 current升压变压器 step-up transformer母线 bus变压器 transformer空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current有功损耗:reactive loss无功损耗:active loss输电系统 power transmission system高压侧 high side输电线 transmission line高压: high voltage低压:low voltage中压:middle voltage功角稳定 angle stability稳定 stability电压稳定 voltage stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC直流 DC电网 power system落点 drop point开关站 switch station调节 regulation高抗 high voltage shunt reactor并列的:apposable裕度 margin故障 fault三相故障 three phase fault分接头:tap切机 generator triping高顶值 high limited value静态 static (state)动态 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power电容器:Capacitor电抗器:Reactor断路器:Breaker电动机:motor功率因数:power-factor定子:stator阻抗:impedance功角:power-angle电压等级:voltage grade有功负载: active load PLoad无功负载:reactive load档位:tap position电阻:resistor电抗:reactance电导:conductance电纳:susceptance上限:upper limit下限:lower limit正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance无功(功率) reactive power功率因数 power factor无功电流 reactive current 斜率 slope 额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap仿真分析 simulation analysis下降率 droop rate传递函数 transfer function框图 block diagram受端 receive-side同步 synchronization保护断路器 circuit breaker摇摆 swing阻尼 damping无刷直流电机:Brusless DC motor刀闸(隔离开关):Isolator机端 generator terminal变电站 transformer substation永磁同步电机:Permanent-magnet Synchronism Motor异步电机:Asynchronous Motor三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架 double-circuit lines on the same tower单机无穷大系统 one machine - infinity bus system励磁电流:magnetizing current补偿度 degree of compensationElectromagnetic fields 电磁场失去同步 loss of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器:shunt capacitor< 下降特性 droop characteristics线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 ElectrotechnicsPrinciple of circuits 电路原理Electrical Machinery 电机学电力系统稳态分析 Steady-State Analysis of Power System电力系统暂态分析 Transient-State Analysis of Power System电力系统继电保护原理 Principle of Electrical System's Relay Protection 电力系统元件保护原理 Protection Principle of Power System 's Element 电力系统内部过电压 Past Voltage within Power system模拟电子技术基础 Basis of Analogue Electronic Technique数字电子技术 Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座 Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project of electronics 电气工程概论Introduction to electrical engineering电子电机集成系统electronic machine system电力传动与控制Electrical Drive and Control电力系统继电保护 Power System Relaying Protection induction machine 感应式电机horseshoe magnet 马蹄形磁铁magnetic field 磁场eddy current 涡流right-hand rule 右手定则left-hand rule 左手定则slip 转差率induction motor 感应电动机rotating magnetic field 旋转磁场winding 绕组stator 定子rotor 转子induced current 感生电流time-phase 时间相位exciting voltage 励磁电压solt 槽lamination 叠片laminated core 叠片铁芯short-circuiting ring 短路环squirrel cage 鼠笼rotor core 转子铁芯cast-aluminum rotor 铸铝转子bronze 青铜horsepower 马力random-wound 散绕insulation 绝缘ac motor 交流环电动机end ring 端环alloy 合金coil winding 线圈绕组form-wound 模绕performance characteristic 工作特性frequency 频率revolutions per minute 转/分motoring 电动机驱动generating 发电per-unit value 标么值breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机revolutions per second 转/秒number of poles 极数speed-torque curve 转速力矩特性曲线 plugging 反向制动synchronous speed 同步转速percentage 百分数locked-rotor torque 锁定转子转矩full-load torque 满载转矩prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral 线与中性点间的staor winding 定子绕组leakage reactance 漏磁电抗no-load 空载full load 满载Polyphase 多相(的)iron-loss 铁损complex impedance 复数阻抗rotor resistance 转子电阻leakage flux 漏磁通locked-rotor 锁定转子chopper circuit 斩波电路separately excited 他励的compounded 复励dc motor 直流电动机de machine 直流电机speed regulation 速度调节shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的wave guide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅regeneration 再生, 后反馈放大coaxial 共轴的,同轴的high-performance 高性能的carrier 载波mature 成熟的Single Side Band(SSB) 单边带coupling capacitor 结合电容propagate 传导传播modulator 调制器demodulator 解调器line trap 限波器shunt 分路器Amplitude Modulation(AM 调幅Frequency Shift Keying(FSK) 移频键控tuner 调谐器attenuate 衰减incident 入射的two-way configuration 二线制generator voltage 发电机电压dc generator 直流发电机polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数 transient response 瞬态响应solid state 固体buck 补偿operational calculus 算符演算gain 增益pole 极点feedback signal 反馈信号dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器excitation system 励磁系统field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统reactive power 无功功率feedback loop 反馈回路automatic Voltage regulator(AVR)自动电压调整器reference Voltage 基准电压magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制block diagram 方框图linear zone 线性区potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器air-gap flux 气隙磁通saturation effect 饱和效应saturation curve 饱和曲线flux linkage 磁链per unit value 标么值shunt field 并励磁场magnetic circuit 磁路load-saturation curve 负载饱和曲线air-gap line 气隙磁化线polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备electric energy 电能primary cell 原生电池energy converter 电能转换器conductor 导体heating appliance 电热器direct-current 直流time invariant 时不变的self-inductor 自感mutual-inductor 互感the dielectric 电介质storage battery 蓄电池e.m.f = electromotive force 电动势3年前 // 2℃ //标签:汽车电力系统专业词汇电气DZ47LE-63C16/2-30mA:DZ47---系列微型断路器(还有很多系列,基本都是厂家命名的)LE-----带漏电脱扣功能63-----框架等级为63AC------瞬时脱扣过流倍数按照明类,如5~7或7~10倍,D为动力型10~14倍16/2---额定电流,16A;极数为2极30mA---漏电动作电流为不大于30mA2、塑壳断路器NS100N-STR22SE-100/3P-P-RCNS-----施耐德(天津梅兰日兰)产品代号100----框架电流等级,有100、160、250、400、630STR22SE--脱扣器类型,电子脱扣,用于NS100、160、250100/3P---额定电流100A,极数为3极P------插入式(安装方式),F--固定式,D--抽出式FC-----板前接线,RC--板后接线另外,后缀还可以有:MX/MN--分励/失压线圈OF/SD/SDE/SDV----多功能辅助开关MCH----电动操作机构ME/MB/MH----漏电保护模块、电流表模块、电流互感器模块、延伸旋转手柄3、类似的图纸标注还有很多,不一定是统一的作图规定、规范,凡是与电气产品有关的标注代号,基本上都参照厂家的产品样本。
电力专业常用英语词汇网易电力专业英语词汇(较全)1)元件设备三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system 机端电压控制 AVR功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitanceAGC Automatic Generation Control自动发电控制AMR Automatic Message Recording 自动抄表ASS Automatic Synchronized System 自动准同期装置ATS Automatic Transform System 厂用电源快速切换装置AVR Automatic Voltage Regulator 自动电压调节器BCS Burner Control System 燃烧器控制系统BMS Burner Management System 燃烧器管理系统CCS Coordinated Control System 协调控制系统CRMS Control Room Management System 控制室管理系统CRT Cathode Ray Tube 阴极射线管DAS Data Acquisition System 数据采集与处理系统DCS Distributed Control System 分散控制系统DDC Direct Digital Control 直接数字控制(系统)DEH Digital Electronic Hydraulic Control 数字电液(调节系统)DPU Distributed Processing Unit 分布式处理单元EMS Energy Management System 能量管理系统ETS Emergency Trip System 汽轮机紧急跳闸系统EWS Engineering Working Station 工程师工作站FA Feeder Automation 馈线自动化FCS Field bus Control System 现场总线控制系统FSS Fuel Safety System 燃料安全系统FSSS Furnace Safeguard Supervisory System 炉膛安全监控系统GIS Gas Insulated Switchgear 气体绝缘开关设备GPS Global Position System 全球定位系统HCS Hierarchical Control System 分级控制系统LCD Liquid Crystal Display 液晶显示屏LCP Local Control Panel 就地控制柜MCC Motor Control Center (电动机)马达控制中心MCS Modulating Control System 模拟量控制系统MEH Micro Electro Hydraulic Control System 给水泵汽轮机电液控制系统MIS Management Information System 管理信息系统NCS Net Control System 网络监控系统OIS Operator Interface Station 操作员接口站OMS Outage Management System 停电管理系统PID Proportion Integration Differentiation 比例积分微分PIO Process inputOutput 过程输入输出(通道)PLC Programmable Logical Controller 可编程逻辑控制器PSS Power System Stabilizator 电力系统稳定器SCADA Supervisory Control And Data Acquisition 数据采集与监控系统SCC Supervisory Computer Control 监督控制系统SCS Sequence Control System 顺序(程序)控制系统SIS Supervisory Information System 监控信息系统TDCS(TDC)Total Direct Digital Control 集散控制系统TSI Turbine Supervisory Instrumentation 汽轮机监测仪表UPS Uninterrupted Power Supply 不间断供电专业英语(电力词汇)标准的机组数据显示 (Standard Measurement And Display Data)负载电流百分比显示 Percentage of Current load(%)单相/三相电压 Voltage by One/Three Phase (Volt.)每相电流 Current by Phase (AMP)千伏安 Apparent Power (KVA)中线电流 Neutral Current (N Amp)功率因数 Power Factor (PF)频率 Frequency(HZ)千瓦 Active Power (KW)千阀 Reactive Power (KVAr)最高/低电压及电流 Max/Min. Current and Voltage输出千瓦/兆瓦小时 Output kWh/MWh运行转速 Running RPM机组运行正常 Normal Running超速故障停机 Overspeed Shutdowns低油压故障停机 Low Oil Pressure Shutdowns高水温故障停机 High Coolant Temperature Shutdowns起动失败停机 Fail to Start Shutdowns冷却水温度表 Coolant Temperature Gauge机油油压表 Oil Pressure Gauge电瓶电压表 Battery Voltage Meter机组运行小时表 Genset Running Hour Meter怠速-快速运行选择键 Idle Run – Normal Run Selector Switch运行-停机-摇控启动选择键 Local Run-Stop-Remote Starting Selector Switch其它故障显示及输入 Other Common Fault Alarm Display and电力行波词汇行波travelling wave模糊神经网络fuzzy-neural network神经网络neural network模糊控制fuzzy control研究方向 research direction副教授associate professor电力系统the electrical power system大容量发电机组large capacity generating set输电距离electricity transmission超高压输电线super voltage transmission power line 投运commissioning行波保护Traveling wave protection自适应控制方法adaptive control process动作速度speed of action行波信号travelling wave signal测量信号measurement signal暂态分量transient state component非线性系统nonlinear system高精度high accuracy自学习功能self-learning function抗干扰能力anti-jamming capability自适应系统adaptive system行波继电器travelling wave relay输电线路故障transmission line malfunction仿真simulation算法algorithm电位electric potential短路故障short trouble子系统subsystem大小相等,方向相反equal and opposite in direction 电压源voltage source故障点trouble spot等效于equivalent暂态行波transient state travelling wave偏移量side-play mount电压electric voltage附加系统add-ons system波形waveform工频power frequency延迟变换delayed transformation延迟时间delay time减法运算subtraction相减运算additive operation求和器summator模糊规则fuzzy rule参数值parameter values可靠动作action message等值波阻抗equivalent value wave impedance附加网络additional network修改的modified反传算法backpropagation algorithm隶属函数membership function模糊规则fuzzy rule模糊推理fuzzy reasoning模糊推理矩阵fuzzy reasoning matrix样本集合 sample set给定的given采样周期sampling period三角形隶属度函数Triangle-shape grade of membership function负荷状态load conditions区内故障troubles inside the sample space门槛值threshold level采样频率sampling frequency全面地all sidedly样本空间sample space误动作malfunction保护特性protection feature仿真数据simulation data灵敏性sensitivity小波变换wavelet transformation神经元neuron谐波电流harmonic current电力系统自动化power system automation继电保护relaying protection中国电力 China Power学报 journal初探primary exploration电机学 electrical machinery自动控制理论 automatic control theory电磁场 electromagnetic field电磁场与电磁波Electromagnetic Fields & Magnetic Waves微机原理 principle of microcomputer电工学 electrotechnics principle of circuit s电力系统稳态分析 steady-state analysis o f power system电力系统暂态分析 transient-state analysi s of power system电力系统继电保护原理 principle of electrica l system's relay protection电力系统元件保护原理 protection principl e of power system 's element电力系统内部过电压 past voltage within po wer system模拟电子技术基础 basis of analogue electr onic technique数字电子技术 digital electrical technique 电路原理实验lab. of principle of circuits电气工程讲座 lectures on electrical powe r production电力电子基础basic fundamentals of powe r electronics高电压工程high voltage engineering电子专题实践topics on experimental proje ct of electronics电气工程概论introduction to electrical eng ineering电子电机集成系统electronic machine syste m电力传动与控制electrical drive and contro l电力电子电路Power Electronic Circuit电力电子电器Power Electronic Equipment电力电子器件Power Electronic Devices电力电子学Power Electronics电力工程Electrical Power Engineering电力生产技术Technology of Electrical Power Generation电力生产优化管理Optimal Management of Electrical Power Generation电力拖动基础Fundamentals for Electrical Towage电力拖动控制系统Electrical Towage Control Systems电力系统Power Systems电力系统电源最优化规划Optimal Planning of Power Source in a PowerSystem电力系统短路Power System Shortcuts电力系统分析Power System Analysis电力系统规划Power System Planning电力系统过电压Hyper-Voltage of Power Systems电力系统继电保护原理Power System Relay Protection电力系统经济分析Economical Analysis of Power Systems电力系统经济运行Economical Operation of Power Systems电力系统可靠性Power System Reliability电力系统可靠性分析Power System Reliability Analysis电力系统无功补偿及应用Non-Work Compensation in Power Systems &Applicati电力系统谐波Harmonious Waves in Power Systems电力系统优化技术Optimal Technology of Power Systems电力系统优化设计Optimal Designing of Power Systems电力系统远动Operation of Electric Systems电力系统远动技术Operation Technique of Electric Systems电力系统运行Operation of Electric Systems电力系统自动化Automation of Electric Systems电力系统自动装置Power System Automation Equipment电路测试技术Circuit Measurement Technology电路测试技术基础Fundamentals of Circuit Measurement Technology电磁感应定律law of electromagnetic induction励磁 excitation 励磁器 magnetizing ex citer励磁器 exciter 恒定励磁器constant excit er励磁器激振器exciter励磁电流:magnetizing current 强行励磁reinforced excitation励磁调节器excitation regulator无功伏安volt-ampere reactive无功伏安时volt-ampere-hour reactive稳态控制homeostatic control; stable co ntrol a steady-state control水电厂hydroelectric station落点 drop point 调节 regulation调节器conditioner 励磁调节器exc itation regulator调速器regulator, governor ;speed re gulator ;(正规)speed governor高抗 high voltage shunt reactor并列的: apposite; paratactic 同步 sy nchronization系统解列system splitting( trip)失去同步loss of synchronization分接头:tap 裕度 margin 档位:tap p osition故障 fault 三相故障 three phase fault 切机 generator triping故障切除时间fault clearing time高顶值 high limited value静态 static (state) 动态 dynamic (sta te) 暂态transient机端电压控制 avr电动机:motor有功负载: active load/pload 无功负载:r eactive load电压互感器pt (potential /voltage transformer )参考值 reference value 单机无穷大系统one machine - infinity bus system仿真分析 simulation analysis 下降率 dr oop rate传递函数 transfer function 框图 bloc k diagram受端 receive-side 同步 synchronizatio n保护断路器 circuit breaker阻尼 damping无刷直流电机:brusless dc motor永磁直流电动机permanent-magnet direct current motor机端 generator terminal永磁同步电机:permanent-magnet synchr onism motor异步电机:asynchronous motor三绕组变压器:three-column transformer t hrclntransthree winding transforme r双绕组变压器:double-column transforme r dblclmntranstwo-circuit transformer; two -winding transformer固定串联电容补偿fixed series capacitor co mpensation双回同杆并架 double-circuit lines on the s ame tower单机无穷大系统 one machine - infinity bu s system偿度 degree of compensation电磁场失去同步electromagnetic fields los s of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器:shunt capacitor下降特性 droop characteristics线路补偿器 ldc(line drop compensatio n) 《。
Chapter 4Schottky RectifiersA Schottky rectifier is formed by making an electrically nonlinear contact between a metal and the semiconductor drift region. The Schottky rectifier is an attractive unipolar device for power electronic applications due to its relatively low on-state voltage drop and its fast switching behavior. It has been widely used in power supply circuits with low operating voltages due to the availability of excellent devices based upon silicon technology. In the case of silicon, the maximum breakdown voltage of Schottky rectifiers has been limited by the increase in the resistance of the drift region. Commercially available devices are generally rated at breakdown voltages of less than 100 V. Novel silicon structures that utilize the charge-coupling concept have allowed extending the breakdown voltage to the 200 V range.1,2 Many applications described in Chap. 1 require fast switching rectifiers with low on-state voltage drop that can also support over 500 V. The much lower resistance of the drift region for silicon carbide enables development of such Schottky rectifiers with very high breakdown voltages.3 These devices not only offer fast switching speed but also eliminate the large reverse recovery current observed in high-voltage silicon P-i-N rectifiers. This reduces switching losses not only in the rectifier but also in the IGBTs used within the power circuits.4 In this chapter, the basic structure of the power Schottky rectifier is first introduced to define its constituent elements. This chapter then provides a discussion of the basic principles of operation of the metal–semiconductor contact. The current transport mechanisms that are pertinent to power devices are elucidated for both the forward and reverse mode of operation. In the first quadrant of operation, the thermionic emission process is dominant for power Schottky rectifiers. In the third quadrant of operation, the influence of Schottky barrier lowering has a strong impact on the leakage current for silicon devices. In the case of silicon carbide devices, the influence of tunneling current must also be taken into account when performing the analysis of the reverse leakage current.B.J. Baliga, Fundamentals of Power Semiconductor Devices, doi: 10.1007/978-0-387-47314-7_4,© Springer Science + Business Media, LLC 2008168FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICESThe tradeoff between reducing power dissipation in the on-state and the off-state for Schottky rectifiers is also analyzed in this chapter. This tradeoff requires taking into account the maximum operating temperature for the application. The power dissipation in the Schottky rectifier is shown to depend upon the barrier height as well as the duty cycle.4.1 Power Schottky Rectifier StructureThe basic one-dimensional structure of the metal–semiconductor or Schottky rectifier structure is shown in Fig. 4.1 together with electric field profile under reverse bias operation. The applied voltage is supported by the drift region with a triangular electric field distribution if the drift region doping is uniform. The maximum electric field occurs at the metal contact. The device undergoes breakdown when this field becomes equal to the critical electric field for the semiconductor.Schottky rectifier by the transport of electrons over the metal–semiconductor contact and through the drift region as well as the substrate. The on-state voltage drop is determined by the voltage drop across the metal–semiconductor interface and the ohmic voltage drop in the resistance of the drift region, the substrate, and its ohmic contact.At typical on-state operating current density levels, the current transport is dominated by majority carriers. Consequently, there is insignificant minority carrier stored charge within the drift region in the power Schottky rectifier. This enables switching the Schottky rectifier from the on-state to the reverse-blocking off-state in a rapid manner by establishing a depletion region within the driftSchottky Rectifiers169region. The fast switching capability of the Schottky rectifier enables operation at high frequencies with low power losses, making this device popular for high frequency switch-mode power supply applications. With the advent of high-voltage Schottky rectifiers based upon silicon carbide, they are expected to be utilized in motor control applications as well.4.2 Metal–Semiconductor ContactNonlinear current transport across a metal–semiconductor contact has been known for a long time. The potential barrier responsible for this behavior was ascribed to the presence of a stable space-charge layer by Walter Schottky in 1938. In this section, the principles for the formation of a rectifying contact between a metal and barrier height between the metal and the semiconductor to their fundamental properties.shown in Fig. 4.2 when they are isolated from each other. In general, the position of the Fermi level in the metal and the semiconductor will have different energy values. In the example shown in the figure, the Fermi level in the semiconductor lies above the Fermi level for the metal. The work function for the metal (ΦM ) is defined as the energy required to move an electron from the Fermi level position in the metal (E FM ) to a state of rest in free space outside the surface of the metal. In the same manner, the work function for the semiconductor (ΦS ) is defined as the energy required to move an electron from the Fermi level position in the semiconductor (E FS ) to a state of rest in free space outside the surface of the semi-conductor. Since no electrons are located at the Fermi level position in the semiconductor, it is useful to define an electron affinity for the semiconductor (χS )an N-type semiconductor region are described. This enables relating the Schottky The energy band diagram for a metal and an N-type semiconductor is170 FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICESas the energy required to move an electron from the bottom of the conduction band in the semiconductor (E C ) to a state of rest in free space outside the surface of the semiconductor. The work function and electron affinity for the semiconductor are related byS S C FS ().E E Φχ=+−(4.1)The potential difference between the Fermi level in the semiconductor and the Fermi level in the metal is called the contact potential (V C ) which is given byC FS FM M S M S C FS ()().qV E E E E ΦΦΦχ=−=−=−+− (4.2)When an electrical connection is provided between the metal and the semiconductor, electrons are transferred from the semiconductor to the metal dueSchottky Rectifiers171to their greater energy until thermal equilibrium is established. This transfer of electrons creates a negative charge in the metal and a positive charge within a depletion region formed at the semiconductor surface. The resulting band structure is illustrated in Fig. 4.3 for the case of a separation d between the metal and the semiconductor surfaces. When the metal and the semiconductor surfaces are brought into contact by reducing the separation d to zero, the band structure for the metal–semiconductor contact is obtained as illustrated in Fig. 4.4. The entire contact potential is now supported within the depletion region formed at the surface of the semiconductor. This voltage is therefore also referred to as the built-in potential (V bi ) of the metal–semiconductor contact. The Schottky barrier height (ΦBN ) is related to the built-in potential byBN bi C FS ().qV E E Φ=+−(4.3)Another useful relationship for obtaining the Schottky barrier height isBN M S ,ΦΦχ=−(4.4)because these properties for the materials are known. The built-in potential creates 0W =(4.5)4.3 Forward ConductionCurrent flow across the metal–semiconductor junction can be produced by the shift in the energy band structure as illustrated in Fig. 4.5. Current flow across the interface then occurs mainly due to majority carriers – electrons for the case of an four basic processes 5 that are schematically shown in the figure:1. The transport of electrons from the semiconductor into the metal over thepotential barrier (referred to as the thermionic emission current )2. The transport of electrons by quantum mechanical tunneling through thepotential barrier (referred to as the tunneling current )3. The transport of electrons and holes into the depletion region followed bytheir recombination (referred to as the recombination current )4. The transport of holes from the metal into the neutral region of thesemiconductor followed by recombination (referred to as the minority carrier current )In the case of power rectifiers, the doping concentration in the semiconductor must be relatively low to support the reverse bias (or blocking) voltage. This spreads the depletion region over a substantial distance. Consequently, the potential barrier isa zero-bias depletion region within the semiconductor whose width is given byN-type semiconductor. The current transport across the contact can take place via application of a negative bias to the N-type semiconductor region. This produces a172 FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICESnot sharp enough to allow substantial current via the tunneling process. The recombination current in the space-charge region is observable only at very low on-state current levels. The current transport due to the injection of holes is usually negligible unless the Schottky barrier height is large. In power Schottky rectifiers, the barrier height is intentionally reduced to lower the on-state voltage drop making the minority carrier current small. Consequently, the current flow via the thermionic emission process is the dominant current transport mechanism in silicon and silicon carbide Schottky power rectifiers. In the case of high mobility semiconductors, such as silicon, gallium arsenide, and silicon carbide, and for power rectifiers with low doping concentrations in the semiconductor, the thermionic emission theory can be used to describe the current flow across the Schottky barrier interface 6:BN (/)2(/)e [e 1],q kT qV kT J AT Φ−=−(4.6)where A is the effective Richardson’s constant, T is the absolute temperature, k is the Boltzmann’s constant, and V is the applied bias. An effective Richardson’s constant of 110, 140, and 146 A cm −2 K −2 can be used for n-type silicon,6 gallium arsenide,6 and 4H silicon carbide,3 respectively. This expression, based upon the superimposition of the current flux from the metal and the semiconductor 7 which balance out at zero bias, holds true for both positive and negative voltages applied to the metal contact. When a forward bias is applied (positive values for V in (4.6)), the first term in the square brackets of the equation becomes dominant allowing calculation of the forward current density:E E FMMETAL C E VE FS SEMICONDUCTORbi -qV FS (a)FFig. 4.5 Energy band diagram for a metal–semiconductor junction after the application of a forward bias voltage (electrons are shown as circles and holes are shown as squares )Schottky Rectifiers173BN FS (/)(/)2e e ,q kT qV kT J AT Φ−=(4.7)where V FS is the forward voltage drop across the Schottky contact. In the case of power Schottky rectifiers, a thick lightly doped drift region must be placed below the Schottky contact as illustrated in Fig. 4.1 to allow supporting the reverse-blocking voltage. A resistive voltage drop (V R ) occurs across this drift region which increases the on-state voltage drop of the power Schottky rectifier beyond V FS . In case of current transport by the thermionic emission process, there is no modulation of the resistance of the drift region because minority carrier injection is neglected. Due to the small thickness (typically less than 50 μm) of the drift region for power Schottky diodes, it is grown on top of a heavily doped N + substrate as a handle during processing and packaging of the devices. The resistance contributed by the substrate (R SUB ) must be included in the analysis because it can be comparable with that of the drift region especially for silicon carbide devices. In addition, the resistance of the ohmic contact (R CONT ) to the cathode may make a substantial contribution to the on-state voltage drop.The on-state voltage drop (V F ) for the power Schottky rectifier, after including the resistive voltage drop, is given byF F FS R S,SP F S ln ,kT J V V V R J q J ⎛⎞=+=+⎜⎟⎝⎠(4.8) where J F is the forward (on-state) current density, J S is the saturation current density, and R S,SP is the total series-specific resistance. In this expression, the saturation current is given by174 FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICESBN (/)2S e q kT J AT Φ−=(4.9)and the total series-specific resistance is given byS,SP D,SP SUB CONT .R R R R =++ (4.10)The saturation current is a strong function of the Schottky barrier height and the temperature as shown in Fig. 4.6 for silicon devices. (A corresponding plot for 4H-SiC is provided in reference 3 for the range of barrier heights typical for this material.) The barrier heights chosen for this plot are in the range for typical metal contacts with silicon. The saturation current density increases with increasing temperature and reduction of the barrier height. This has an influence not only on the on-state voltage drop but also on an even greater impact on the reverse leakage current as discussed in Sect. 4.4. As discussed in Chap. 1, the specific on-resistance of the drift region is given by2on-ideal3S n C4BV .R E εμ= (4.11)The specific on-resistance of the drift region for 4H-SiC is approximately 2,000 times smaller than for silicon devices for the same breakdown voltage as shown earlier in Fig. 3.6. Their values are given by9 2.5D,SP on-ideal (Si) 5.9310BV R R −==×(4.12)and12 2.5D,SP on-ideal (4H-SiC) 2.9710BV .R R −==× (4.13)In addition, it is important to include the resistance associated with the thick, highly doped N + substrate because this is comparable with that for the drift region in some instances. The specific resistance of the N + substrate can be deter-mined by taking the product of its resistivity and thickness. For silicon, N + substrates with resistivity of 1 m Ω cm are available. If the thickness of the substrate is 200 μm, the specific resistance contributed by the N + substrate is 2 × 10−5 Ω cm 2. For silicon carbide, the available resistivity of the N + substrates is substantially larger. For the available substrates with a typical resistivity of 0.02 Ω cm andthickness of 200 μm, the substrate contribution is 4 × 10−4 Ω cm 2. The specificresistance of the ohmic contact to the N +substrate can be reduced to less than 1 × 10−6 Ω cm 2 with adequate attention to increasing the doping concentration at the contact and by using ohmic contact metals with low barrier heights as discussed in Sect. 2.4. The calculated forward conduction characteristics for silicon Schottky rectifiers are shown in Fig. 4.7 for various breakdown voltages. For this figure, a Schottky barrier height of 0.7 eV was chosen because this is a typical value used inSchottky Rectifiers 175 actual power devices. It can be seen that the series resistance of the drift region does not adversely impact the on-state voltage drop for the device with a breakdownV,176FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICESThe significantly smaller resistance of the drift region enables scaling of the breakdown voltage of silicon carbide Schottky rectifiers to much larger voltages typical of medium and high power electronic systems, such as those used for motor control. The forward characteristics of high-voltage 4H-SiC Schottky rectifiers are shown in Fig. 4.8 for the case of a Schottky barrier height of 1.1 eV. The N+ substrate resistance used for these calculations was 4 × 10−4Ω cm2. It can be seen that the drift region resistance does not produce a significant increase in on-state voltage drop until the breakdown voltage exceeds 3,000 V. From these results, it can be concluded that silicon carbide Schottky rectifiers are excellent companion diodes for medium and high power electronic systems that utilize insulated gate bipolar transistors (IGBTs). Their fast switching speed and absence of reverse recovery current can reduce power losses and improve the efficiency in motor control applications.4The choice of the Schottky barrier height has an impact on the on-state voltage drop. To illustrate this, the calculated forward conduction characteristics for silicon Schottky rectifiers are shown in Fig. 4.9 for various Schottky barrier heights. For this figure, a breakdown voltage of 50 V was chosen because this is a typical value for power devices. It can be seen that an increase in the on-state voltage drop occurs in proportion to the magnitude of the Schottky barrier height. It is therefore attractive to use a low Schottky barrier height for power rectifiers to reduce the on-state voltage drop.rectifiers designed to support low voltages is determined mainly by the voltage drop across the metal–semiconductor contact. By using (4.8) and (4.9) and neglecting the resistive voltage drop, the on-state voltage drop is given byF F BN 2ln .kT J V q AT Φ⎛⎞=+⎜⎟⎝⎠(4.14)Since the logarithmic term in this expression has a negative value, the forward voltage drop for the Schottky diode decreases with increasing temperature. Examples of the variation of the on-state voltage drop for Schottky rectifiers with temperature are shown in Fig. 4.10 for various cases of the Schottky barrier height. The observed decrease in the on-state voltage drop with temperature is favorableSimulation ExampleTo gain further insight into the physics of operation for the Schottky rectifier, the results of one-dimensional numerical simulations are provided in this section for the case of a device with a breakdown voltage of 50 V. This is a typical breakdown voltage for commercially available silicon power Schottky rectifiers. This breakdownvoltage was obtained with a drift region with doping concentration of 8 × 1015cm −3 and thickness of 3 μm. As discussed earlier, the doping concentration was lower during the simulations when compared with the analytical model because Fulop’s law underestimates the impact ionization coefficients for silicon. The lower doping concentration results in a larger specific on-resistance for the drift region which increases the on-state voltage drop. The forward conduction characteristics were obtained by sweeping the cathode voltage in the negative direction. Simulations were performed for various values for the Schottky barrier height to examine the impact on the injection of minority carriers (holes) into the drift region. The minority carrier lifetimes (τp0 and τn0) were assigned a value of 10 μs during these simulations.The forward characteristics obtained with the simulations for theseSchottky rectifiers are shown in Fig. 4.11 for various Schottky barrier heights. These characteristics are in excellent agreement with those shown in Fig. 4.9 based upon the analytical model. For example, the on-state voltage drop obtainedat a current density of 100 A cm −2is 0.41 V for both the simulation and the analytical case when the barrier height is 0.7 eV. The analytical model is therefore sufficient for the analysis of the silicon Schottky rectifier. The on-state current flow in the Schottky rectifier was discussed earlier with the aid of Fig. 4.5. It was pointed out that one of the current flow mechanisms is by minority carrier injection into the drift region. The simulations allow analysis of this contribution by examination of the hole concentration in the drift region. Sincethe injection process is known to be sensitive to the barrier height,8the hole concentration in the drift region is shown in Fig. 4.12 for various barrier heights. In all cases, the on-state voltage drop was chosen as 0.5 V, which is the typical operating value for silicon rectifiers because it produces an on-state current density ofabout 100 A cm −2. It can be observed that the injected hole concentration increases with increasing barrier height as expected. However, even for the largest barrierheight of 0.8 eV, the injected hole density is less than 1013cm −3 in the drift region, which is 1,000 times smaller than the doping concentration. This confirms that the on-state operation of the silicon Schottky rectifier can be performed while neglecting the injection of minority carriers. It also confirms that the stored charge in the silicon Schottky rectifier is small allowing rapid switching from the on-state to the off-state during circuit operation.-1.010101010Breakdown Voltage = 50 VF o r w a r d C u r r e n t D e n s i t y (A /c m 2)-2.5-1.5-0.5Forward Bias (V)-2.010123104φBN = 0.5 eVφBN = 0.6 eV φBN = 0.7 eV φBN = 0.8 eV-14.4 Reverse BlockingWhen a reverse bias is applied to the Schottky rectifier, the voltage is supported across the drift region with the maximum electric field located at the metal–semiconductor contact as shown in Fig. 4.1. The energy band diagram corres-ponding to this condition is illustrated in Fig. 4.13. Since no voltage can be supported within the metal, the reverse-blocking capability of the Schottky rectifier is governed by the physics for the abrupt P–N junction that was discussed in Chap. 3. If a parallel-plane breakdown voltage is assumed, the drift region doping and width for a silicon device are given by184/3D PP 210(BV )N −=×(4.15)and67/6D PP 2.5810(BV ).W −=×(4.16)In the case of actual power Schottky rectifiers, the breakdown voltage is constrained by breakdown at the edges. Edge terminations that have been used to raise the breakdown voltage of Schottky rectifiers close to the parallel-plane value are discussed in Sect. 4.10.N Breakdown Voltage = 50 V 105H o l e C a r r i e r D e n s i t y (c m -3)-2.5 1.0 3.0 4.02.0Distance (microns)0107109101110131015φBN = 0.5 eVφBN = 0.6 eV φBN = 0.7 eVφBN = 0.8 eV Doping Density1017+s t r a t eInjected hole concentration for silicon Schottky rectifiers at an on-state voltage dropof 0.5V4.4.1 Leakage CurrentThe leakage current for Schottky rectifiers is comprised of three components:1. Space-charge generation current arising from the depletion region2. Diffusion current arising from carrier generation in the neutral region3. Thermionic emission current across the metal–semiconductor contact Due to the relatively small barrier height utilized in silicon Schottky rectifiers, the thermionic emission component is dominant. The leakage current for the Schottky rectifier can be obtained by using (4.6) and substituting a negative bias of magnitude V R applied to the diode:BN R (/)(/)2L e [e 1].q kT qV kT J AT Φ−−=−(4.17)Since the typical reverse bias voltages (V R ) are much greater than the thermal energy (kT /q ), the exponential term in the square brackets becomes very small under reverse-blocking conditions. Consequently, the leakage current is determined by the saturation current:BN (/)2L S e .q kT J AT J Φ−=−=− (4.18)As previously discussed with reference to Fig. 4.6 for the saturation current, the leakage current due to the thermionic emission process is a strong function of the Schottky barrier height and the temperature. To reduce the leakage current and minimize power dissipation in the blocking state, a large Schottky barrier height is required. Further, a very rapid increase in leakage current occurswith increasing temperature as shown in Fig. 4.14. If the power dissipation due to the leakage current becomes dominant, the resulting increase in the device temperature produces a positive feedback mechanism, which can lead to unstableBased upon the above analysis, the leakage current of the Schottky rectifier should be independent of the magnitude of the applied reverse bias voltage. However, actual power Schottky rectifiers exhibit a significant increase in the leakage current with increasing reverse bias voltage. This increase in the leakage current is far greater than the space-charge generation current within the expanding depletion region with increasing reverse bias voltage.Under reverse-blocking operation, it has been found that there is a reduction of the Schottky barrier height due to the image force lowering pheno-menon.9 To analyze this phenomenon, consider the energy band diagram for the metal–semiconductor contact shown in Fig. 4.15. When an electron in the semiconductor approaches the metal at a distance x from the interface, a positive mirror image charge of the same magnitude occurs in the metal at a distance −x from the interface. This produces an electrostatic force on the electron given by22S ().4(2)q F x x πε=(4.19)This attractive force between the particles creates a negative potential energy for the electron inside the semiconductor, which is the work done to move the electron from position x to infinity. The corresponding image force potential (V I ) is given by22I 2S S d ()d .1616xx q x q qV F x x x xπεπε∞∞==−=−∫∫ (4.20)The negative image force potential combines with the positive potential due to theSchottky barrier, producing a maximum at a distance X M from the interface. At this location, the image force potential is equal to the potential drop across the depletion region due to the prevailing electric field indicated by the arrow in the figure. Since the maximum is located close to the interface, it can be assumed that the electric field at this location is approximately equal to the maximum electric field (E M ) at the Schottky contact. Equating the image force potential (V I ) at location X M to the potential drop (E M X M ) in the depletion region givesM M S M.16q E X X πε= (4.21)phenomenon, indicated as ΔΦBN in Fig. 4.15, is then given byBN M M Δ2.E X Φ=(4.22)Using (4.21) to eliminate X M , the barrier lowering is found to be determined by the maximum electric field (E M) at the metal–semiconductor interface:BN ΔΦ=(4.23)For a one-dimensional structure, the maximum electric field is related to the applied reverse bias voltage (V R) byM E =(4.24)As an example, the reduction of the barrier height for a silicon Schottky rectifier, for the case of a drift region doping concentration of 1 × 1016 cm −3, is shown in Fig. 4.16. The reduction of the Schottky barrier height is 0.065 eV at the maximum reverse bias voltage. Although this change in barrier height may appear to be small, it can lead to a substantial increase in the leakage current with increasing reverse bias voltage.The leakage current for the Schottky rectifier including the effect of Schottky barrier lowering is given byBN BN (Δ)/2L e .q kT J AT ΦΦ−−=−(4.25)The leakage currents calculated with and without the Schottky barrier lowering effect are compared for the case of a silicon device with a breakdown voltage of 50 V in Fig. 4.17. In making these plots, the leakage current due to space-charge generation was neglected because it is much smaller than the leakage current across the metal–semiconductor contact. It can be seen that the leakage current is enhanced by a factor of 5 times due to the barrier lowering phenomenon as the reverse voltage increases and approaches the breakdown voltage.4.4.3 Prebreakdown Avalanche MultiplicationThe actual reverse leakage current for silicon Schottky rectifiers has been found to increase by an even greater degree than predicted by the Schottky barrier lowering phenomenon. This increase in leakage current can be accounted for by including the effect of prebreakdown avalanche multiplication of the large number of free carriers being transported through the Schottky rectifier structure at the high electric fields associated with reverse bias voltages close to the breakdown voltage.10 This impact ionization process can be treated as a purely electron-initiated process due to the relatively large thermionic emission current across the metal–semiconductor contact. The total number of electrons that reach the edge of the depletion region will be larger than those crossing the metal–semiconductor contact by a factor M n , which is the electron multiplication factor. An analytical expression for the electron multiplication factor can be derived by using a power series approximation for the impact ionization coefficients αn and αp :24 4.93n 6.610E α−=×(4.26)。
开关电源经典书籍推荐Power Supply Cookbook, Marty Brown, EDN Series, 2001.本书作者Marty Brown任职On Semiconductor (Motorola)多年,具有多年开关式电源供应器设计之实务经验,本书可以说是他以工程师的观点,以实务经验为出发点所著作的一本精简扼要的设计参考书籍,全书仅230余页.本书重点主要在第三章:PWM Switching PowerSupplies说明传统脉宽调变转换器的设计方法;与第四章:Waveshaping Techniques说明新型的谐振式转换器设计方法.本书的优点是掌握重点,可以快速的建立系统的设计观念,缺点是未提供设计方程式推导说明,初学者不易了解其设计概念.Switching Power Supply Design, Edited by: Abraham I.Pressman, McGraw Hill, 2nd Ed., Nov. 1997.本书作者Abraham I. Pressman可以说是开关式电源设计祖师级开创大师早自1977年即着有『Switching and Linear Power Supply,Power Converter Design』一书,是早期电源设计从业人员重要的参考书籍.本书是作者20年后再次出版的一本SPS设计专业书籍,全书包含了十七章近700页,针对电源设计的专门议题都有重点的说明,读者可以选择有兴趣的章节阅读,是一本很好的设计百科工具书.[缺图]交换式电源技术手册, 原著:原田耕介, 译者:陈连春, 建兴出版社, 1997年10月.本书是原田耕介先生自1990年~1993年间在日本『电子技术』杂志连载关于电源供应器技术解说相关文章所汇整而成的一本着作,本书汇集了四十余位专家学者在开关式电源设计的专业说明,1997年由陈连村先生翻译中文本,本书目前已更新至第二版.本书的特色是非常实际,直接提供设计相关信息与实例说明,都是从事电源多年工作经验的累积,是从事电源设计工程师必读的参考书.Switching Power Supply Design & Optimization, SanjayaManiktala, McGraw Hill, May 2004.本书作者任职于美商国家半导体公司(National Semiconductor)主任工程师,具有多年电源设计之实务经验.电源设计是一个整合理论与实务的最佳化过程,在这个复杂的最佳化过程当中,有许多需要进行试试看的选择,而这些选择又不纯然只是试试看,是基于经验与理论判断的试试看,有时也需要一些灵机一动的想法,也就是这些困难与迷惑成就了电源设计引人入胜之处,许许多多的工程师置身其间,获得难以言明的乐趣.本书作者选择了『最佳化』为书名之关键字,有兴趣的读者可一窥实务工程师观点的最佳化思路历程.Switch-Mode Power Supply Simulation: Designing with SPICE3, Steven M. Sandler, McGraw-Hill Professional; 1st Ed., Nov.11, 2005.电源供应器太复杂了,它的复杂一方面来自开关瞬间变化所引发的电路与元件的高频动态特性,另一方面也源自于元件的非线性特性,更遑论因结构所导致的散热,因电路布局所引发的电磁干扰,以及负载变化所造成的非线性动态响应等等,因此对电源问题接触的愈为深刻,可能导致对计算机模拟的愈发怀疑?『为何要做模拟?哪有那么多时间?』经常是实务工程师心中的疑问?本书从磁性元件,特别是多组输出变压器的相互耦合开始,建立其等效电路模型,进而以EMI 滤波器设计为对象,说明以SPICE模拟为导向的设计与分析方法,本书或可以作为开关式电源供应器的理论建模与实务应用之间的一个桥梁.Practical Computer Analysis of Switch Mode Power Supplies,Johnny C. Bennett, CRC Press, July 27, 2005.本书是一本着重于SPICE计算机模拟的电源设计参考书,作者以自身多年电源设计的实务经验为基础,说明了以小信号模型为基础的开关式电源转换器回路补偿设计方法,书中列举了多种常用电源转换电路的SPICE小信号等效电路模型及其模拟之频率响应,对DC-DC转换器控制回路设计有兴趣的读者可参考本书.Switch-Mode Power Supply SPICE Cookbook, ChristopheBasso, McGraw-Hill, March 19, 2001.本书作者任职于法国On Semiconductor但任电源应用工程师,本书以SPICE为模拟工具,针对各种基本的开馆转换器电路架构进行了模拟实例说明,是一本很好的范例参考书,有兴趣利用SPICE进行开关式电源学习与设计的同好,这是一本容易入手的参考书.Switch-Mode Power Supplies - SPICE Simulations andPractical Designs, Christophe Basso, McGraw-Hill, Feb. 1,2008.本书作者任职于法国On Semiconductor但任电源应用工程师,本书试图结合SPICE的理论模拟与实务设计,藉由模拟找出实务设计的关键,由于能得到On-Semi的工程支援,作者在书中所列举的模拟实例电路已能完全以实际应用电路为主,并藉由所建立的PWM IC行为模型(behavior model)进行系统层次的模拟,可以提供电源系统设计工程师与电源控制IC设计工程师在实作之前具体掌握电源系统的动态响应.对乐于尝试以SPICE进行开关式电源设计者而言,是一本必备的书籍.Fundamentals of Power Electronics Robert W. Erickson andDragan Maksimovic, Kluwer Academic Publishers, February2001.本书两位作者均毕业于加州理工学院,师承大名鼎鼎的S. Cuk与R.D. Middlebrook,Prof. Cuk发明了著名的Cuk Converter,也是Prof. Middlebrook的学生,本书可说是加州理工学院在电力电子领域学术发展一脉相承的具体表现.本书厚达近900页,内容充实、说理分明是其优点.要建立电力电子专业领域的理论基础,这是一本最好的教课书.本书作者所在的科罗拉多大学以本书开授了三门相关课程,由此可见本书内容之丰富.对从事电源设计的工程师而言,本书距离实用最遥远,但却是最重要的理论基础,读通此书,辅以实务经验,可成专业.Fundamentals of Power Electronics with MATLAB, RandallShaffer and Charles River Media, 1st Ed., Aug. 2006.MATLAB/Simulink是许多学生在校时最常使用的软件,但要应用MATLAB于电源设计,却不是件容易的工作,主要关键是必须了解设计规格、建立设计流程、推导设计方程式.Simulink的模拟环境提供了一个以电力电子为应用对象,含电源与马达控制的模拟软件PowerBlock Set,可以图形化的方式定义马达与电源的模拟电路图,再进行模拟分析.本书提供了一些以状态方程式为主的开关式电源转换器应用实例,可以作为建立以MATLAB为设计平台的开关式电源供应器设计软件.MathCAD数学入门导引(附光盘), 杨国隆、熊高生, 松岗出版社, 2008年02月25日.Excel可能是许多专业电源设计工程师最常使用的软件,设计者可以建立专属的设计流程、设计方程式,根据规格可以快速决定适当的元件参数值.但是Excel不易阅读,难以达到设计承传的效果,MathCAD是一个可以结合文字说明、方程式定义、交互式在线计算、计算结果图形化、技术文件排版、转换成Word格式的doc档等等功能,可以说是设计文件化的最佳软件,也逐渐成为许多电源系统与IC设计公司的标准设计软件.是从事专业电源设计工程师的必学软件.目前市面上尚未见到以电源设计为应用的MathCAD专业书籍,本书主要在于介绍MathCAD的基本功能,是可以参考的MathCAD使用入门书籍.。
电力系统 power system 落点 drop point开关站 switch station调节 regulation高抗 high voltage shunt reactor并列的 apposable裕度 margin故障 fault三相故障 three phase fault分接头 tap切机 generator triping高顶值 high limited value静态 static (state)动态 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power电容器 Capacitor电抗器 Reactor断路器 Breaker电动机 motor功率因数 power-factor定子 stator阻抗 impedance功角 power-angle电压等级 voltage grade有功负载: active load PLoad无功负载 reactive load档位 tap position电阻 resistor电抗 reactance电导 conductance发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current升压变压器 step-up transformer母线 bus变压器 transformer空载损耗 no-load loss铁损 iron loss铜损 copper loss空载电流 no-load current有功损耗 active loss无功损耗reactive loss输电系统 power transmission system 高压侧 high side输电线 transmission line高压 high voltage低压 low voltage中压 middle voltage功角稳定 angle stability稳定 stability电压稳定 voltage stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC直流 DC电网 power system电纳 susceptance上限 upper limit下限 lower limit正序阻抗 positive sequence impedance 负序阻抗 negative sequence impedance 零序阻抗 zero sequence impedance无功(功率) reactive power功率因数 power factor无功电流 reactive current斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap仿真分析 simulation analysis下降率 droop rate传递函数 transfer function框图 block diagram受端 receive-side同步 synchronization保护断路器 circuit breaker摇摆 swing阻尼 damping无刷直流电机 Brusless DC motor刀闸(隔离开关) Isolator机端 generator terminal变电站 transformer substation永磁同步电机 Permanent-magnet Synchronism Motor异步电机 Asynchronous Motor三绕组变压器 three-column transformer ThrClnTrans双绕组变压器 double-column transformer DblClmnTrans 固定串联电容补偿 fixed series capacitor compensation 双回同杆并架 double-circuit lines on the same tower单机无穷大系统 one machine - infinity bus system励磁电流 Magnetizing current补偿度 degree of compensation电磁场:Electromagnetic fields失去同步 loss of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器 shunt capacitor<下降特性 droop characteristics线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics电路原理 Principle of circuits电机学 Electrical Machinery电力系统稳态分析 Steady-State Analysis of PowerSystem电力系统暂态分析 Transient-State Analysis of Power System电力系统继电保护原理 Principle of Electrical System's Relay Protection电力系统元件保护原理 Protection Principle of Power System 's Element电力系统内部过电压 Past Voltage within Power system 模拟电子技术基础 Basis of Analogue Electronic Technique数字电子技术 Digital Electrical Technique电路原理实验 Lab. of principle of circuits电气工程讲座 Lectures on electrical power production 电力电子基础 Basic fundamentals of power electronics 高电压工程 High voltage engineering电子专题实践 Topics on experimental project of electronics电气工程概论 Introduction to electrical engineering电子电机集成系统 Electronic machine system电力传动与控制 Electrical Drive and Control电力系统继电保护 Power System Relaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer带负荷调压变压器on-load regulating transformer变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器风扇transformer fan变压器油枕transformer oil conservator(∽ drum 变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage 配电设备power distribution equipmentSF6断路器SF6 circuit breaker开关switch按钮button隔离开关isolator,disconnector真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch电气设备electrical equipment变流器current converter电流互感器current transformer电压互感器voltage transformer 电源power source交流电源AC power source 直流电源DC power source 工作电源operating source备用电源Standby source强电strong current弱电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay时间继电器time relay零序电压继电器zero-sequence voltage relay 差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulation断路器breaker,circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker 高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact常闭触点normally closed contaact并联电容parallel capacitance保护接地protective earthing熔断器cutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电压secondary voltage并联电容器parallel capacitor无功补偿器reactive power compensation device 消弧线圈arc-suppressing coil母线Bus,busbar三角接法delta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit短路电流计算calculation of short circuit current 自动重合闸automatic reclosing高频保护high-freqency protection距离保护distance protection横差保护transverse differential protection 纵差保护longitudinal differential protection 线路保护line protection过电压保护over-voltage protection母差保护bus differential protection瓦斯保护Buchholtz protection变压器保护transformer protection电动机保护motor protection远方控制remote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protection 跳闸线圈trip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection定时限过电流保护definite time over-current protection 三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection 方向性电流保护the directional current protection零序电流保护zero-sequence current protection阻抗impedance微机保护Microprocessor Protection。
实用资料:电气工程专业课(电力类)翻译参考专业外语:Professional English电路(上)electrical circuit (I)电路(下)electrical circuit (II)金工实习machinery practice电机(上)electrical machinery (I)电工实验与测试electrical experiment & test电子综合实践integrated electronic practice信号与系统signal & system电子技术基础(模拟)fundamentals of electronic (analog)电磁场electromagnetic field电子技术实验electronic experiment(I)电子辅助设计EDA Electronic Design Automatic(I)发电厂动力工程基础Heat power engineering in generating plant企业管理enterprise management电气主系统electrical system principle电力系统稳态/暂态分析Steady-State/ Transient-State Analysis of Power System 电力系统继电保护Power System Relaying Protection电力系统潮流计算机分析:Computer Analysis of Power Flow数字电子技术Digital Electrical Technique微机原理microcomputer principle电子技术基础(数字)fundamentals of electronic (digital)自动控制automatic control theory电力系统分析electric power system analysis电子技术基础实验electronic experiment(II)电气主系统课程设计electrical system principle-course design电子辅助设计EDA Electronic Design Automatic(II)通信与计算机网络communication & computer networks电力系统继电保护electric power system relaying电力系统继电保护Power System Protective Relaying电力系统远动技术electric power system remote protocol生产实习productive practice Technology继电保护课程设计electric power system relaying-course design电力电子技术power electronics电力电子技术基础:Fundamentals of Electronics Power Technology电力电子课程设计Power electronics course design电力系统自动控制electric power system control & automation高电压技术High voltage engineering Technology变电站自动化substation automation电力经济electric power system economics电能质量控制electric power quality control配电网自动化distribution system automation电力系统新技术new techniques on electric power system控制电机electrical machine control调度自动化与能量管理energy management & automation灵活交流输电系统flexible AC transmission system计算机保护computer protection电力系统电磁兼容EMC in electric power system毕业实习graduation practice毕业设计graduation dissertation数字信号处理:Digital Signal Processing自动控制理论:Automatic Control Theory电气工程基础:Fundamentals of Electrical Engineering电磁场概论:Introduction to Electro-Magnetic Field计算机继电保护:Microcomputer-Based Relaying Protection电气设备的绝缘检测与故障诊断:Insulation Diagnostics and Troubl-Shooting for Electrical Installations电网规划:Power System Planning可编程控制器原理及应用:Principles of PLC (Programmable logic Controller) And Application电磁场数值计算:Numerical Computation of Electro-Magnetic Field电力系统继电保护:Relay Protection of Power System电力系统自动装置原理The Principle of Electric Power System Automatic Equipment电力通信系统及调度自动化:Power System Communication and Dispatching Automatic专业方向电气工程Electrical Engineering电机与电器Electric Machines and Electric Apparatus电力系统及其自动化Power System and its Automation高电压与绝缘技术High Voltage and Insulation Technology电力电子与电力传动Power Electronics and Power Drives电工理论与新技术Theory and New Technology of Electrical Engineering电子科学与技术Electronics Science and Technology。
第14章电感设计本章节将应用 方法来探讨诸如电感滤波器的磁性元件的设计。
这种方式,预先定义最大磁通量密度 ,设计该元素来实现一个给定的铜损。
电感滤波器的基本设计将在14.1和14.1.5章节中讨论。
在电感滤波器的应用中,得到所需的电感、防止饱和、并实现可接受的低直流绕组阻抗和铜损是非常必要的。
当直流铜损和绕组阻抗作为主要约束条件[1,2]时,几何常数 用来衡量磁芯的有效磁尺寸。
电感滤波器的设计,使用的磁芯需要选择足够大的 ,然后计算所需的间隙、圈数和线径。
这样就给出了一个简单的逐步设计滤波器电感的过程。
普通铁芯形状的 值的列表见附件D。
14.3章节涵盖了 方法的扩展部分-多绕组原理。
在多绕组的应用中,优化绕组线径是非常重要的,这样可以降低整体的铜损。
同时,写出一个峰值磁通量密度与实际波形或与期望感值之间的表达式也是必要的。
这样,又给出了一个逐步设计变压器的方法。
本章节 方法的目的在于一个已知铜损的磁性元件的设计。
在 方法中,磁损并没有特别指出,且 是已知的固定值。
在下个章节中,通量将作为一个优化设计变量来进行讨论。
这将要求降低整个损耗(铜损+磁损)。
14.1 滤波器电感设计限制条件图.14.1(a)表述了使用在CCM 降压变换器中的滤波电感。
在此项应用中,通常选用那些电感电流的峰峰值∆i是满载电感电流DC分量I的一小部分,如图14.1(b)所示。
如图14.2中所示,使用足够大的气隙来防止由峰值电流I+∆i产生的磁饱和。
我们来考虑图14.1和14.2中滤波电感的设计。
假设,磁损或近似损耗可以忽略,因此电感损耗依赖于低频铜损耗。
所以电感模型的等效电路如图14.3所示,其中R代表绕组的直流阻抗。
希望可以得到一个给定的电感L和给定的绕组阻抗R。
在最严酷的条件下,施加给定的峰值电流I ,此时,电感不应该出现饱和。
IR(14.1)电感绕组阻抗对转换效率和输出电压的影响见第3章节。
假设,电感拓扑等价于图14.4(a)。
等效磁回路如图14.4(b)所示。
磁芯磁阻R 和气隙磁阻R 为:(14.2)其中, 是磁芯磁回路长度, 是磁芯横截面积, 是磁芯磁导率, 是气隙长度。
假设,磁芯和气隙有相同的横截面积。
由图14.4(b)得nI ∅ R R 14.3 通常, ≪ ,所以,等式(14.3)可以近似于nI ∅R 14.4 电气间隙决定了电感的特性。
以下可以定义四个设计必要条件。
14.4.1 最大通量密度给出一个峰值绕组电流 ,期望它可以操作在最大磁通量密度 下,所选择的 的值应小于最严酷条件下磁芯的饱和磁通量密度。
将∅ BA 带入等式(14.4),得出,nI BA R 14.5以上令I ,且B ,我们得到,nI B A B(14.6)这是第一个设计必要条件。
匝比n和气隙长度 是未知的。
14.1.2 电感给定的电感值必须可以实现。
电感等于L(14.7)这是第一个设计必要条件。
匝比 和气隙长度 是未知的。
14.1.3 绕组面积如图14.5所示,绕组必须适合穿过窗口,也就是磁芯中间的孔。
导体的横截面积或者裸区是 ,假设,绕组有n圈,然后铜导体区域在窗口中就是n (14.8) 如果磁芯面积 ,则绕组导体可用面积可以表达为K W(14.9) 其中, 是窗口利用因子,或填充系数。
因此,第三个必要条件可以表达为K W nA (14.10)填充因子 是填充满铜线的磁芯窗口面积的一个小数, 必须在1和0之间。
如[1]所讨论的,有几种机制可以导致 降低。
圆导线不能包裹的很完美,依赖于绕线技术,这将降低了0.7到0.55。
绕线有绝缘层,绕线导体面积比上整个绕线面积大约从0.95变化到0.65,这依据导线的线径和绝缘类型。
骨架用到窗口面积的一部分。
绕线或者/且绕线层之间可能要求绝缘。
对于低电压电感,含有骨架的磁芯,其 的典型值为0.5;对于离线式变压器来说为0.25到0.3;对于及KV 的高压变压器来说为0.05-0.2;对于低电压滤波变压器或电感来说为0.65。
14.1.4绕组阻抗绕组阻抗为R ρ(14.11) 其中,ρ是导体材质的电阻系数, 是绕组长度, 是绕线横截面积。
室温条件下,铜的电阻系数为1.724*10 ∙m 。
由n 匝绕组线长以表达为l n MLT (14.12)其中,MLT 是绕组每匝平均长度。
MLT 是磁芯的几何函数。
将等式(14.12)带入(14.11)可以得出,R ρn MLT (14.13)这就是第四个必要条件。
14.1.5 磁芯几何常数四个必要条件中,等式(14.6),(14.7),(14.10)和(14.13)的必要参数 , 和MLT,是磁芯的几何函数; , , ,L,K ,R是给定规格或其他已知的参数;l ,n和 是未知的。
消去未知的l ,n和 ,可以得到如下等式:A W MLTρL IBRK(14.14)等式右边的参数是指定或者是已知的。
等式左边的参数是磁芯的几何函数。
选择一个几何满足等式(14.14)的磁芯是必要的。
参数,K A WMLT(14.15)称为磁芯几何常数。
它是一个优良指数,在铜损和最大通量密度一定的应用中,它描述了磁芯的有效电气尺寸。
附件D包含的表格中列举了几种铁芯标准类别的K 值。
K 单位是长度尺寸的五次方。
等式(14.14)表明规格怎样影响磁芯尺寸的。
增加感值或者增加峰值电流需要增加磁芯尺寸。
增加峰值通量密度要求减小磁芯尺寸,因此使用有着高饱和通量密度的磁芯材质是有优势的。
允许较大的绕组阻抗,则较大的铜损将导致较小的磁芯。
当然,铜损的增加和较小的磁芯将导致较高的温升,可能这样是无法接受的。
填充系数也会影响磁芯尺寸。
等式(14.15)表明了磁芯的几何尺寸是怎样影响磁芯的性能的。
电感为满足增加电气要求的能力,可以通过增加磁芯面积 或者窗口面积 两者中的一个来实现。
增加窗口面积表明所使用额铜线材质将会增加。
我们可以使用铁替换铜,反之亦然,我们可以改变磁芯的几何尺寸来保证K 等式(14.15)的成立。
14.2 逐步设计过程第14.1章节中所阐述的设计过程总结如下。
该滤波电感设计过程应该认为是首过方法。
很多问题包括详细绝缘要求、电感涡流损耗、温升、圈数凑整等都忽视了。
如下所描述的参数使用的单位为:导线电阻率ρΩ∙cm绕组峰值电流 (A)电感 L(H)绕组阻抗 R (Ω)绕组填充因子最大操作通量密度 (T) 磁芯尺寸,使用厘米表示:磁芯横截面积 (cm )磁芯窗口面积 (cm )每圈平均长度MLT(cm ) 使用厘米而不是米,这就要求在等式中加入适当的系数。
1)确定磁芯尺寸IK10 cm (14.16)选择一个足够大的磁芯来满足这个不等式。
注意, ,MLT, 是该磁芯的参数。
电阻率铜线的 是1.724∙10 Ω∙cm。
2)确定气隙长度I10 m (14.17)表示为cm ∙ 4π∙10 /m。
气隙长度以m给出。
等式(14.17)给出的是近似值,忽略了通量边缘及其他非理想现象。
磁芯厂商出售有隙磁芯。
使用相当的参数 而不是来指定气隙长度。
等于电感(mH),以1000圈绕组来实现。
一旦 确定,磁芯厂商的责任就是获得恰当的间隙长度。
可以修改等式(14.17)得到所要求的 ,如下所示:A 10 AmHturns (14.18)用厘米(cm)表示,L用亨利(H)表示, 以特斯拉(T)表示。
3)确定圈数nLIA10 (14.19)4)评估线径cm (14.20)所选择的导线,气裸铜区域小于或等于这个值。
美国的一个导线标准如附件D所示。
绕组阻可以计算为:R n MTLAΩ (14.21)14.3 使用 方式设计多绕组磁性元件方法可扩展为多绕组磁芯绕组的情况,比如13.5到13.55章节的电感和耦合电感。
期望的匝比以及期望的绕组电压和电流波形是给定。
在耦合电感或反激电感中,励磁电感也是指定的。
希望可以选择磁芯尺寸、每个绕组的圈数和线径。
同时,也假设磁通量密度也是已知的。
通过 方法实现期望的铜损。
在多绕组条件下,每个绕组都会贡献一些铜损,在多绕组之间分配有效的窗口面积是非常有必要的。
在下面的14.3.1章节中,可以发现,如果根据绕组的视在功率来分配窗口面积,可以将总铜损减到最小。
这几个结论会在如下章节中得到使用,并对应用于耦合电感设计的 方法做了改进。
14.3.1窗口面积的分配在多绕组中设计一个多绕组磁芯元件的首要问题是分配窗口面积 。
希望设计一个有K 个绕组的元件,其匝比关系分别为 : :…: .这些绕组必须传导有效电流分别为 : :…: 。
应该注意的是,这些绕组必须有效的平行,这样可以使绕组电压保持理想的匝比关系。
tt⋯t(14.22)然而绕组有效电流是由负载决定的,且,一般与匝比无关。
器件如图14.6所示。
相关参数总结如图14.7所示。
必须为每个绕组在整个窗口面积中分配一部分,如图14.7所示。
令小数 为绕组j所分配的窗口面积。
0 1⋯ 1(14.23)绕组j的低频铜损 依赖于此绕组的直流阻抗,如下= (14.24) 绕组j的直流阻抗为,=ρ(14.25)其中,ρ是导线电阻率, 是绕组j所使用导线的长度, 是绕组j所使用导线的截面积。
这些等式可以表示为,MLT (14.26)(14.27)MLT,表示绕组每圈平均长度, 是指绕组填充系数。
将这些表达式带入(14.25),得出,ρ(14.28) 因此可以得出绕组j的铜损(14.29)K个绕组的总铜损为,, , , ⋯ ,(14.30)希望选择一系列 ,可以使总铜损降至最小。
考虑一下,当我们在范围(0,1)内改变一个 ,即 时,看看会发生什么。
当 0时,然后我们分配面积为0的区域给绕组1。
结果,绕组1的阻抗趋于无穷大。
当然绕组一的铜损也接近于无穷大。
另一方面,其他绕组给予最大的面积,因此,其他绕组的铜损可以降低。
不管怎样,总铜损趋于无穷大。
当 1时,然后我们分配面积为1的区域给绕组1,其他的绕组为0。
因此绕组1的阻抗为1,同时其低频铜损最小,但是其余绕组的铜损趋于无穷大。
如图14.8所示,必须在这两个极限之间对 进行优化,其中总铜损降至最小。
我们使用拉格朗日乘积方法来计算 , ,…, 的优化值。
希望根据等式(14.23)的限制,将等式(14.30)降至最低。
因此,我们定义函数,f( , ,…, , )= , ( , ,…, )+ , ,…, (14.31)其中,, ,…, 1(14.32) 是限制其等于零。
是拉格朗日因子。
优化关键在于求解如下系统等式,, ,…, ,, ,…, ,⋮, ,…, ,, ,…, ,(14.33)结果为,, (14.34)(14.35)这是α的最佳选择,使得 , 结果值最小。
根据等式(14.22),绕组电压与匝比成比例的。
因此,我们可以通过对等式(14.35) 乘以或除以参数 / ,将α 表达成相同的格式,∑(14.36)它与所使用的电压是有效值还是峰值无关。