空间数据结构及编码
- 格式:ppt
- 大小:445.00 KB
- 文档页数:50
空间数据的结构与编码在当今数字化的时代,空间数据成为了我们理解和处理地理信息的重要基石。
空间数据不仅在地理科学、城市规划、环境保护等领域发挥着关键作用,也在日常生活中的导航、地图应用等方面为我们提供了极大的便利。
而要有效地处理和利用空间数据,就离不开对其结构和编码的深入理解。
空间数据,简单来说,就是描述地理空间中对象的位置、形状、大小等特征的数据。
它可以是点、线、面等几何对象,也可以是与这些对象相关的属性信息,比如一个城市的人口数量、建筑物的高度等。
为了能够高效地存储、管理和处理这些复杂多样的空间数据,我们需要对其进行合理的结构设计和编码。
空间数据的结构可以分为矢量数据结构和栅格数据结构两大类。
矢量数据结构将空间对象表示为点、线、面等几何元素,并通过坐标来精确描述其位置和形状。
例如,一条河流可以用一系列连接的线段来表示,每个线段的端点都有明确的坐标。
矢量数据结构的优点在于数据精度高、存储空间小,并且能够方便地进行几何变换和空间分析。
比如,我们可以很容易地计算两个矢量对象之间的距离、面积等。
然而,矢量数据结构在处理大面积的连续数据(如地形)时,可能会比较复杂。
栅格数据结构则将地理空间划分为规则的网格单元,每个单元对应一个特定的值。
比如,在一张卫星图像中,每个像素就是一个栅格单元。
栅格数据结构的优点是处理简单、易于与遥感数据结合,适用于对大面积连续现象的模拟和分析。
但它的缺点是数据量较大,精度相对较低,且在进行几何操作时可能会产生锯齿状的边缘。
除了上述两种主要的数据结构,还有一些混合结构,如矢栅一体化结构,结合了矢量和栅格数据结构的优点,以满足不同应用场景的需求。
接下来,让我们谈谈空间数据的编码。
编码是将空间数据转换为计算机能够理解和处理的形式的过程。
常见的编码方式包括拓扑编码、坐标编码、块编码等。
拓扑编码通过记录空间对象之间的拓扑关系(如相邻、包含等),来减少数据的冗余并提高空间分析的效率。
例如,在一个道路网络中,我们只需要记录每个路段的起点和终点以及它们之间的连接关系,而不需要重复存储每个点的坐标。
空间数据结构数据结构定义:指数据组织的形式,是指适合于计算机存储、管理和处理的数据逻辑结构,地理实体的空间排列方式和相互关系的抽象描述,对数据的一种理解和解释。
空间数据的三大特性:空间,时间,专题属性。
常见的数据结构:矢量结构,栅格结构,数字高程模型,面向对象模型,矢量和栅格的混合数据结构等,网络结构,空间数据编码:1、空间数据结构的实现2将搜集的、经过审核了的地形图、专题地图和遥感影像等资料按特定的数据结构转换为适合于计算机存储和处理的数据的过程3在地理信息系统的空间数据结构中栅格结构的编码方式:直接栅格编码、链码、游程长度编码、块码、四叉树码等矢量结构主要有坐标序列编码、树状索引编码和二元拓扑编码等编码方3.2 栅格数据结构一、概述1、栅格数据结构是基于空间划分或铺盖的空间被划分成大量规则的或不规则的空间单元,称为象素(Cell或Pixel),依行列构成的单元矩阵叫栅格(Grid)三角形方格六角形2、每个单元通过一定的数值表达方式(如颜色、灰度级)表达诸如环境污染程度、植被覆盖类型等空间地理现象3、对同一现象,也可能有若干不同尺度、不同聚分性的铺盖4、目前常用的是基于正方型分划的栅格,是指将地球表面划分为大小均匀紧密相邻的网格阵列每个网格作为一个象元或象素由行、列定义包含一个代码表示该象素的属性类型或量值,或仅仅包括指向其属性记录的指针5 、栅格数据的比例尺就是栅格大小与地表相应单元大小之比6 、GIS中栅格数据经常是来自卫星遥感、摄影测量、激光雷达和扫描设备中,以及用于数字化文件的设备中二、栅格数据组织1 、以规则的阵列来表示空间地物或现象分布的数据组织2 、每个数据表示地物或现象的非几何属性特征点状地物用一个栅格单元表示;线状地物沿线走向的一组相邻栅格单元表示面或区域用记有区域属性的相邻栅格单元的集合表示3 、遥感影像属于典型的栅格结构,每个象元的数字表示影像的灰度等级三、栅格结构的建立(1)栅格数据的获取途径遥感数据图片的扫描矢量数据转换:手工方法获取: 在专题图上均匀划分网格,逐个网格地确定其属性代码的值,最后形成栅格数据文件(2)栅格系统的确定栅格坐标系的确定:坐标系的确定实质是坐标系原点和坐标轴的确定由于栅格编码一般用于区域性GIS,原点的选择常具有局部性质为了便于区域的拼接,栅格系统的起始坐标应与国家基本比例尺地形图公里网的交点相一致,并分别采用公里网的纵横坐标轴作为栅格系统的坐标轴。
1、地理信息系统地理信息系统是一种采集、模拟、处理、检索、分析和表达地理空间数据的计算机系统。
2. 地理信息是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律等的数字、文字、图像和图形等的总称;它属于空间信息,具有空间定位特征、多维结构特征和动态变化特征。
4.地理数据:是以地球表面空间位置为参照,描述自然、社会和人文景观的数据,主要包括数字、文字、图形、图像和表格等。
17.空间数据编码空间数据编码是指将数据分类的结果,用一种易于被计算机和人识别的符号系统表示出来的过程。
编码的目的空间数据编码是用来提供空间数据的地理分类和特征描述,同时为了便于地理要素的输入、存储、管理,以及系统之间数据交换和共享的需要。
2、空间数据结构空间数据结构是指空间数据在计算机内的组织和编码形式。
它是一种适合于计算机存贮、管理和处理空间数据的逻辑结构,是地理实体的空间排列和相互关系的抽象描述。
它是对数据的一种理解和解释。
8. 四叉树数据结构是将空间区域按照四个象限进行递归分割(2n×2n,且n≥1),直到子象限的数值单调为止。
凡数值(特征码或类型值)呈单调的单元,不论单元大小,均作为最后的存储单元。
这样,对同一种空间要素,其区域网格的大小,随该要素分布特征而不同。
3、3S 技术:(GIS、RS、GPS)技术的综合或一体化形成的集成系统。
在这种集成系统中,GPS主要用于实时、快速地提供目标、各类传感器和运载平台的空间位置;RS用于实时或准实时地提供目标及其环境的语义或非语义信息,发现地球表面的各种变化,及时地对GIS的空间数据进行更新;GIS则是对多种来源的时空数据综合处理、动态存储、集成管理、分析加工,作为新的集成系统的基础平台,并为智能化数据采集提供地学知识。
4、DTM/DEMDTM为数字地形模型,是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
数字地形模型中地形属性为高程时称为数字高程模型(Digital Elevation Model),简称DEM。
一、在一张土地利用图上Map ,有两个不同属性(P1、P2)的多边形(如图1所示),P1
多边形由a 、e 、g 线段组成,P2多边形由b 、c 、d 、g 线段组成,点的地理坐标分别是1(2.5,2.5),2(4.0,3.0),3(4.0,2.0)4(5.5,3.5),5(5.0,2.5)。
请用层次结构、关系数据库结构分别描述该地图。
图1
二、图2为原始栅格阵列,请完成以下编码:
1)对整个图形采用游程压缩编码;
2)采用链状编码方法对“R ”地物实现编码;
3)给出四叉树编码的树状图和十进制的Morton 编码。
图 2
三、图3为原始栅格阵列,A 、B 代表地物的属性,请采用行程编码和链式编码对B 多边形(空白区域)进行编码。
3 4
Map
P1 P2
a
b
c
e
d 1
2
5
g
图3
四、基于十进制Morton编码方法建立表1的线性四叉树(表1)。
表1。
第五章空间数据结构数据结构即指数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。
地理信息系统空间数据结构是指空间数据在系统内的组织和编码形式(GIS数据结构也可称为图形数据格式),它是指适合于计算机系统存储、管理和处理地理图形的逻辑结构。
GIS中,空间数据一般有着较为复杂的数据结构,目前,主要有两种数据模型表示空间数据,即矢量数据模型和栅格数据模型。
4.1 栅格数据结构4.1.1概述栅格数据是计算机和其它信息输入输出设备广泛使用的一种数据模型,如电视机、显示器、打印机等的空间寻址。
甚至专门用于矢量图形的输入输出设备,如数字化仪、矢量绘图仪及扫描仪等,其内部结构实质上是栅格的。
遥感数据也是采用特殊扫描平台获得的栅格数据。
栅格数据就是用数字表示的像元阵列,其中,栅格的行和列规定了实体所在的坐标空间,而数字矩阵本身则描述了实体的属性或属性编码。
栅格数据最显著的特点就是存在着最小的、不能再分的栅格单元,在形式上常表现为整齐的数字矩阵,因而便于计算机进行处理,特别是存储和显示。
4.1.2编码方案以图4-1为例,介绍几种编码方法的编码思路、方案和特点。
图4-1 栅格数据结构1. 游程长度编码地理数据往往有较强的相关性,也就是说相邻象元的值往往是相同的。
游程长度编码的基本思想是:按行扫描,将相邻等值的象元合并,并记录代码的重复个数。
游程长度编码的数据结构: 行号,属性,重复次数。
图4-1的游程长度编码为:1,A,4,R,1,A,6…对于游程长度编码,区域越大,数据的相关性越强,则压缩越大。
其特点是,压缩效率较高,叠加、合并等运算简单,编码和解码运算快。
2. 块式编码块式编码是将游程扩大到二维情况,把多边形范围划分成若干具有同一属性的正方形,然后对各个正方形进行编码。
块式编码的基本思想:由初始位置(行列号)、半径和属性代码组成。
图4-1的块状编码为:(1,1,3,A),(1,5,1,R),(1,6,2,A),…块状编码对大而简单的多边形更为有效,对一些虽不较多的复杂多边形效果并不好。