第二章 混凝理论(第一讲)
- 格式:pdf
- 大小:861.23 KB
- 文档页数:72
第 2 章 混凝(1)课程名称:水质工程学(Ⅰ)本课内容:混凝机理,混凝剂和助凝剂授课对象:给水排水专业本科生授课时间: 90 分钟一、教学目的通过本次教学,使学生理解和掌握双电层理论,电性中和,吸附架桥, 卷扫网捕等混凝基本理论,了解硫酸铝在水中的水解特征,了解水处理混凝 剂种类及特点,为后续学习打下良好的基础。
二、教学意义通过本次教学,使学生理解和掌握双电层理论,电性中和,吸附架桥, 卷扫网捕等混凝基本理论,了解硫酸铝在水中的水解特征,了解水处理混凝 剂种类及特点,为后续学习打下良好的基础。
三、教学重点混凝机理;硫酸铝在水中的水解;混凝剂与助凝剂四、教学难点混凝机理五、教学方式电子课件课堂讲授。
六、讲授内容第2 章 混凝第 2章 混凝2.1混凝机理2.1.1水中胶体的稳定性2.1.2硫酸铝在水中的化学反应2.1.3混凝机理一、压缩双电层二、吸附电性中和三、吸附架桥四、网捕或卷扫2.2混凝剂和助凝剂2.2.1混凝剂2.2.2助凝剂七、讲授方法第 2章 混凝2.1混凝机理混凝是水中胶体粒子以及微小悬浮物的聚集过程;混凝可去除的颗粒大小是胶体及。
混凝过 部分细小的悬浮物,是一种化学方法。
范围在:1nm~0.1m m(有时认为在1m m)程涉及到三个方面的问题:水中胶体的性质、 混凝剂 在水中的水解与形态、胶体与混凝剂的相互作用。
2.1.1水中胶体的稳定性一、胶体的稳定性所谓胶体稳定性系指胶体粒子在水中长期保持分散悬浮物状态的特性。
胶体稳定性 分为:动力学稳定和聚集稳定。
1、动力学稳定:颗粒布朗运动对抗重力影响的能力。
颗粒越小,动力学稳定性越高。
2、聚集稳定:系指颗粒胶体粒子之间不能相互聚集的特性。
胶体粒子很小,比表面积大从而表面能很大,在布朗运动的作用下,有自发地相互 聚集的倾向,但由于粒子表面同性负荷斥力作用和水化膜的阻碍使这种自发聚集不能发 生。
如果胶体粒子表面电荷或水化膜消除,便失去聚集稳定性,小颗粒便可以凝聚成大 的颗粒。
第二章混凝第1节混凝的去除对象混凝可去除的颗粒大小是胶体及部分细小的悬浮物,是一种化学方法。
范围在:1nm~0.1μm(有时认为在1μm)混凝目的:投加混凝剂使胶体脱稳,相互凝聚生长成大矾花。
水处理中主要杂质:粘土(50nm-4 μm)细菌(0.2μm-80μm)病毒(10nm-300nm)蛋白质(1nm-50nm)、腐殖酸1637年我国开始使用明矾净水1884年西方才开始使用混凝过程涉及到三个方面的问题:水中胶体的性质混凝剂在水中的水解与形态胶体与混凝剂的相互作用第2节胶体的性质一、胶体的稳定性1.动力学稳定性:布朗运动对抗重力。
2.聚集稳定性:胶体带电相斥(憎水性胶体)水化膜的阻碍(亲水性胶体)两者之中,聚集稳定性对胶体稳定性的影响起关键作用。
二、胶体的双电层结构动电位ζ电位:决定了胶体的聚集稳定性一般粘土ζ电位=-15~-40mV细菌ζ电位=-30~-70mV三、DLVO理论胶体的稳定性和凝聚可由两胶粒间的相互作用和距离来评价。
由下列两方面的力决定:静电斥力:E R-1/d2范德华引力:E A-1/d6(有些认为是1/d2或1/d3)由此可画出两者的综合作用图。
另一方面,胶体的布朗运动能量Eb=1.5kTk:波兹曼常数,T:温度Eb<Emax(势垒)胶体距离x<oa, 凝聚(一次凝聚)x>oa,稳定(二次凝聚除外)以上称为DLVO理论。
只适用于憎水性胶体。
德加根(derjaguin)、兰道(Landon)(苏联,1938年独立提出〕伏维(Verwey)、奥贝克(Overbeek)(荷兰,1941年独立提出)胶体的凝聚:降低静电斥力――ζ电位↓――势垒↓――脱稳――凝聚办法:加入电解质,但只适用于憎水性胶体。
第二章、混凝第一节、混凝机理一、水中胶体稳定性常规处理工艺中主要去除对象是悬浮物和胶体,而重点是去除胶体。
水中的胶体颗粒可分成憎水的和亲水的两大类。
(1)憎水胶体指与水分子间缺乏亲和性的胶体。
如水中粘土以及投加的无机混凝剂所形成的胶体等无机物质。
(2)亲水胶体指与水分子能结合的胶体。
如蛋白质、淀粉、细菌、部分藻类及胶质等有机物质则属于亲水胶体。
亲水胶体靠它所特有的极性基团来吸附水分子,故能吸附大量的水分。
其实,水处理中的典型憎水胶体粘土颗粒表面也可能吸附了一层水分子,但比起亲水胶体所吸附的水分来则微不足道。
胶体颗粒在水中长时间保持分散状态的性质称为胶体的稳定性。
对于憎水的胶体,其稳定性可以通过它的双电层结构来说明;对于亲水胶体虽然也具有一种双电层结构但它的稳定主要由它所吸附的大量水分子所构成的水化膜来说明。
1、胶体的表面电性及双电层结构双电层结构是由于胶体颗粒具有巨大的比表面而产生的,巨大的比表面便产生了巨大的吸附能力,吸附了大量的离子就形成了所谓的双电层结构。
天然水中胶体杂质通常带负电荷,由于胶核表面吸附了水中与其电荷符号相反的离子(反离子)且电荷相等,故整个胶体(胶团)在水中表现为电中性。
其双电层结构如图2-1所示(以粘土为例)。
双电层一般包括内层和外层两部分,内层为Stern 吸附层,即紧靠胶核表面被吸附较紧密的一层反离子,厚度为δ;外层为离子扩散层,即吸附层外围的反离子层,厚度为d 。
吸附层与扩散层之间的分界面称为滑动面。
胶核表面电位为总电位,以0φ表示,胶体滑动面上的电位为动电位,即Zeta 电位,以ζ表示。
胶体在运动过程中表现出来的是ζ电位,而不是0φ电位。
各种杂质的ζ电位是不相同的,ζ电位可用电泳法来测定。
2、胶体稳定性胶体稳定性指胶体粒子在水中长期保持分散悬浮状态的特性。
胶体稳定性分为:1)动力学稳定性,指胶粒由于布朗运动而无法下沉的特性;2)聚集稳定性,指由于静电斥力或水化作用所引起的使胶粒之间保持分散稳定状态的特性。