第60课时 分式方程的应用(2)——行程问题
- 格式:pptx
- 大小:484.37 KB
- 文档页数:18
八年级数学上册人教版分式方程的应用—— 行程问题1.会用不同分析方法审题,列分式方程解行程问题中的常见类型.2.能根据实际问题检验所得结果是否合理.温馨提示:“尝试完成、独立完成”等提示语,请暂停视频,有效把握节奏效果更佳哦珍爱生命敬畏自然敬畏自然和谐共生一则动物新闻惹人注目动物新闻蚂蚁给乌龟的挑战书乌龟先生:我想与你进行比赛,由兔子 先生做裁判,从小柳树跑到相距12米的大柳树下。
比赛枪声响后,先 到者为胜。
蚂蚁先生赛程12米,乌龟的速度是蚂蚁速度的2倍,结果:乌龟比蚂蚁提前了1分钟到终点,所以蚂蚁输了。
v乌龟和蚂蚁两者的速度各多少?v 分析:请从故事中找出相关的数量关系。
路程=速度×时间解:设蚂蚁的速度为x 米/分,则乌龟速度为2x 米/分。
蚂蚁时间 乌龟时间—=1解得x=6 经检验是原方程的解。
答:蚂蚁速度为6米/分,乌龟速度为12米/分。
列分式方程解应用题的一般步骤:1.审清题意,找出数量关系及等量关系,;2.设未知数(要有单位);3 列方程;4. 解方程(认准未知数);5. 验根;6. 答(要有单位).试用列表法解行程问题从2004年5月起某列车平均提速v千米/小时,用相同时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?等量关系:时间相等路程km速度km/h时间h提速前提速后解设列车提速前行使 的速度为 x 千米/时,根据行使的时间的等量关系,得 例4;从2004年5月起某列车平均提速v 千米/时,用相同的时间,列车提速前行使s 千米,提速后比提速前多行使50千米,提速前列车的平均速度为多少?解得经 检验:x= 是原方程的解答:提速前列车的速度为 千米/时例题赏析相遇问题例2 甲步行先出发,乙骑自行车, 从相距19千米的两地相向而行,甲行至7千米时两人相遇,此时两人共用了2小时,已知骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.图示法:总路程 ( )千米19甲乙步行( )小时骑行( )小时步行时+骑行时=()小时2由此可列出方程:步行( )千米7则骑行( )千米12设步行速度为x 千米/小时,那么骑自行车速度为( )千米/小时4x规范形式:解:设甲步行的速度为x千米/小时,根据题意得整理得:解得:x=5把x=5代入原方程,成立∴ x=5是原方程的解.答:这个人步行速度为5千米/小时.追及问题:到距15千米的村庄检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两种车的速度。
分式方程的应用——行程工程问题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII方式方程的应用㈠一、要点精讲1、分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .2、常见问题的基本关系量⑴ 行程问题:时间路程速度= 速度路程时间= 时间速度路程⨯= ⑵ 工程问题:工作时间工作总量工作效率= 工作效率工作总量工作时间= 工作时间工作效率工作总量⨯=二、课前热身1、A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为V 1,从B 地返回A 地的速度为V 2,则A 、B 两地间往返一次的平均速度为( )A .221V V + B .21212V V V V + C .21212V V V V + D .无法计算 2、(08大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.3、一件工作甲单独做a 小时完成,乙单独做b 小时完成,甲、乙两人合作完成这件工作所需的小时数为A 、b a 11+;B 、ab 1;C b a +1;D 、ba ab + 4、某食堂有煤m 吨,原计划每天烧煤a 吨,现在每天节约煤b 吨,则可比计划多烧的天数是( )A 、b a m -;B 、b a m a m --;C 、b m ;D 、am b a m -- 5、一水池装有两个进水管,单独开甲管需a 小时注满空池,单独开乙管需b 小时注满空池,若同时打开两管,那么注满空池的时间是( )A .(b a 11+)小时B .ab 1 小时C .b a +1 小时D .ba ab +小时 三、典例精析考点一:行程问题1、(2010益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+2. (2011长春)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是(A )28002800304x x-=. (B )28002800304x x -=. (C )28002800305x x -=. (D )28002800305x x -=. 2.(2011铜仁)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km 设他家到学校的路程是xkm ,则据题意列出的方程是( ) A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .3、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的高速公路。
分式方程应用行程问题行程问题课件分式方程应用(行程问题)你,我,他——人人都有创造力.相信自己是最棒的.行程问题课件随时小结列分式方程解应用题的一般步骤1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:认真仔细.5.验:有两次检验.两次检验是:(1)是否是所列方程的解;(2)是否满足实际意义.6.答:注意单位和语言完整.且答案要生活化.行程问题课件1、在行程问题中,三个基本量是:路程、速度、时间。
它们的关系是:路程路程路程=速度×时间;速度=时间;时间=速度.基础练习:1x(1)小汽车的速度为x千米/时,则15分钟能行驶________千米4(2)甲乙两地相距300千米,客车的速度为x千米/时,300则乘坐该客车从甲地到乙地需_________小时.x(3)客车从甲地开往乙地需x小时,已知甲乙两地相距450千米,450则该客车的速度是__________千米/时.x在水流行程中:已知船在静水中的速度和水流速度,那么顺水速度=静水中的速度+水流速度;逆水速度=静水中的速度-水流速度.行程问题课件例题1:某列车平均提速v千米/小时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?行程思考:这是____问题等量关系:时间相等路程km提速前提速后速度km/h时间hs50xvsxss50xxv行程问题课件等量关系:时间相等注意:路程km速度km/h时间h提速前s、v的实际意义提速后s50以下是解题格式xv解:设提速前列车的平均速度为x千米/时由题意,得ss50xxv在方程两边同乘以x(x+v)得:s(x+v)=x(s+50)sv解得x=sv50检验:由于s,v都是正数,当x=时,x(x+v)≠0sxs50xvsxsv∴x=50是原方程的解50sv答:提速前列车的平均速度为50千米/时。
11 分式方程的应用2——行程问题班级:________ 姓名:________一、行程类应用题例1.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午4时到达,求原计划行军的速度.练习2.一队学生去校外参观,在他们出发后30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?例2.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.例3.刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?练习3.两个小组攀登一座450m高的山,第二组的攀登速度是第一组的a倍.(1)若两个小组同时开始攀登,当a=1.2时,第二组比第一组早15min到达顶峰,求两个小组的攀登速度;(2)元旦假期这两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,问第二组的平均攀登速度比第一组快多少?(用含a,h的代数式表示)例4:朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,当面包车车行驶了200公里时,发现小轿车车只行驶了180公里。
(1)若面包车的行驶速度比小轿车快10km/h,请问面包车,小轿车的速度分别为多少km/h?(2)小轿车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小轿车为了追上面包车,他就马上提速,他们约定好在300公里的地方碰头,他们正好同时到达,请问小轿车提速多少km/h?(3)两车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小轿车为了追上面包车,他就马上提速,他们约定好在s公里的地方碰头,他们正好同时到达,请问小轿车提速多少km/h?练习4.初夏五月,小明和同学们相约去森林公园游玩.从公园入口处到景点只有一条长15km的观光道路.小明先从入口处出发匀速步行前往景点,1.5h后,迟到的另3位同学在入口处搭乘小型观光车(限载客3人)匀速驶往景点,结果反而比小明早到45min.已知小型观光车的速度是步行速度的4倍.(1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这3位同学下车步行前往景点(步行速度和小明相同),观光车立即返回接载正在步行的小明后直接驶往景点,并正好和这3位同学同时到达.求这样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)二、工程问题中分式方程与一元一次方程的综合应用例5.一辆汽车开往距离出发地180km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地,(1)求前1小时行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?练习5.初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)大巴与小车的平均速度各是多少?(2)张老师追上大巴的地点到基地的路程有多远?三、工程问题中分式方程与不等式的综合应用例6.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家里,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校,已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?例7.甲,乙两车由A地同时出发驶往B地,A、B两地的距离为600千米,若乙车比甲车每小时多行驶20千米,则乙车到达B地时,甲车离B地100千米.(1)求甲、乙两车的速度;(2)乙车到达B地后,立即沿原路以原速返回A地,甲车到达B地后停留20分钟,然后沿原路先以原速返回,行驶一段路程后每小时提速80千米,若甲车不早于乙车回到A地,求甲车从B地返回A地提速前最少行驶多少千米.练习6.某种型号油电混合动力汽车,从A地到B地,只用燃油行驶,需用燃油76元;从A地到B地,只用电行驶,需用电26元,已知每行驶1千米,只用燃油的费用比只用电的费用多0.5元.(1)若只用电行驶,每行驶1千米的费用是多少元?(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?。
15.2.分式方程的应用—行程问题一、教材分析:“可化为一元一次方程的分式方程应用题”既是解一元一次方程的延伸,又是后续学习复杂应用题的基础,也是学生感到畏难的学习内容之一。
究其原因:学生不懂得如何审题,理不清题目中复杂的数量关系,无法准确找到由未知到已知的钥匙------等量关系。
如何突破这一难点?我通常引导学生采用列表分析法。
二、学情分析:通过课前预习调查,发现学生存在的问题有:(1)思维不够清晰,无法正确列出方程;(2)单位不统一时不做变换(3)速度的单位未摆脱小学局限,没有能够转移到千米/小时、米/秒表示;(4)验根的二重性;(5)做题不够细心,答非所问或恰好相反。
因此,本节课要教会学生用找、设、列、解、验、答六步处理此类问题。
三、学习目标:1、知识与技能:分析题意找出等量关系,会列出分式方程解决实际问题;理解分式方程应用题验根的重要性及掌握分式方程应用题的步骤。
2、过程与方法:通过解决实际问题提高学生把实际问题转化为数学问题,把数学文字语言转化为符号语言的能力。
3、情感态度与价值观:加强学生应用数学知识于实际问题的兴趣和意识。
四、教学过程:(一)回顾旧知:1、在前面我们学过的应用题有哪些类型?2、解分式方程应用题的一般步骤是什么?3、行程类问题的数量关系:路程=速度×时间,速度=路程÷速度,时间=路程÷速度。
4、在水流行程问题中,已知静水速度和水流速度顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(二)自主探究行程问题(1)1、甲、乙二人要走15千米的路,甲的速度是乙的速度的1.2倍,甲比乙少用0.5小时。
甲、乙二人的速度各是多少?(学生读题、审题、设元、找相等关系、列方程)分析:设乙的速度是x千米/小时,则甲的速度是1.2x 千米/小时根据等量关系“甲比乙少用0.5小时”,则有甲的时间+0.5=乙的时间x2.115+0.5 =x 15 解:设乙的速度是x 千米/小时,则甲的速度是1.2x 千米/小时,根据题意,得:x 2.115+0.5=x 15 解得,x=5经检验,x=5是原分式方程的解并符合题意。
《分式方程的应用(二)》教学设计教学目标:知识技能:会分析题意找出相等关系,会列可化为一元一次方程的分式方程解决行程问题. 过程方法:通过分式方程的应用教学,培养数学建模思想.情感态度价值观:在活动中增加学生的交流,培养学生乐于探究的习惯,在解决问题中,让学生了解数学知识来源于生活,同时又为生活服务,让学生体会数学的应用价值.教学重点:根据问题中的相等关系列出分式方程,解决简单的行程问题.教学难点:准确找出问题中的相等关系并正确的列出分式方程.教学准备:微视频、自主学习任务单、教学设计和教案、多媒体课件、教学过程中与预设生成有别的预案.教法、学法:①教学方法生生、师生互动探究式教学,遵循以学生为主体、教师为主导、学生发展为主旨的现代教育原则,结合八年级学生的心理特征和已有的认知水平开展教学.②学法指导学法突出问题引导下的合作交流,通过生生互评,师生互动解决同学自学时产生的问题,从而形成对新知识研究的意识和研究的思路与方法,并构建新知识。
教学流程:预习汇总→生生评析→教师小结→在线作业→课堂总结一、预习汇总在电子白板上展示学生观看两个微视频之后与我在线上交流学习困惑的截图,让其他学生共同解决疑难。
主要问题总结如下:1.行程问题中有哪些数量?它们之间有怎样的关系?2.列方程解应用题的一般步骤?3.列方程解应用题的关键?4.如何解含有字母的分式方程?设计意图:与学生进行课外的线上交流,有助于老师准确把握学生的疑问,提高课堂教学的针对性,且能让学生养成勤于思考、自主探究、发现问题的好习惯。
二、生生评析在电子白板上展示学生课前完成的自主学习任务单上中的典型问题,让学生对典型问题进行多级评析(满分6分),直到每个问题都能分析透彻为止.设计意图:在生生评析的环节中将展示四道题目的解题过程,这四道题的解答过程中包含了学生可能出现的几个主要错误,而学生的多级评析可以让学生对本节课的内容理解透彻。
由于这个环节全部由学生完成,真正做到了以学生为主体、教师为主导,以学定教的教学思路,同时培养了学生主动探究的习惯,也锻炼了学生的能力,提高了学生的注意力和学习效率。