济宁市土壤放线菌资源调查研究
- 格式:pdf
- 大小:232.19 KB
- 文档页数:5
土壤中放线菌的采集、分离、培养、发酵及提取实验目的:1、从土壤中分离产抗生素的放线菌2、放线菌的培养3、放线菌的发酵产生活性物质4、放线菌产生的活性物质提取。
实验原理:放线菌是一类呈菌丝状生长,主要以孢子繁殖。
放线菌与人类的生产和生活关系极为密切,目前广泛应用的抗生素约80%是各种放线菌所产生的。
许多临床应用的抗生素均由土壤中分离的放线菌产生。
采用选择培养基可分离土壤中的放线菌。
产抗生素的放线菌经液体培养后,其分泌的抗生素存在于离心所得的上清液中,可采用微生物的抑菌试验进行检测,从而筛选到所需的抗生素产生菌,并对其进一步培养,繁殖,发酵,最终提取我们所需的抗生素。
实验器材:1、土壤2、培养基:高氏一号培养基、种子培养基、发酵培养基3、其他:重铬酸钾、培养皿、牛津杯、接种环、酒精灯,无菌涂棒、三角锥瓶、高压蒸汽灭菌锅、天平、药匙、烧杯、量筒、玻璃棒、试管、牛皮纸、线绳等。
实验步骤:一、土壤放线菌株的采集采集样品:选定取样点(最好是有机质含量高的菜地),按对角交叉(五点法)取样。
先除去表层约2cm的土壤,将铲子插入土中数次,然后取2~10cm处的土壤。
将5点样品约1kg充分混匀,除去碎石、植物残根等。
样品(土壤)处理:室温风干二、土壤中放线菌的分离、培养1、配制淀粉培养基淀粉琼脂培养基(高氏培养基)可溶性淀粉2g;硝酸钾0.1g;磷酸氢二钾0.05g;氯化钠0.05g;硫酸镁0.05g;硫酸亚铁0.001g;琼脂2g;水100ml.先把淀粉放在烧杯里,用5ml水调成糊状后,倒入95ml水,搅匀后加入其他药品,使它溶解。
加热到煮沸时加入琼脂,不停搅拌,待琼脂完全溶解后,补足失水。
调整PH到7.2-7.4,分装后灭菌,备用。
2、土壤悬液梯度稀释①将5.0g土壤加入到50ml灭菌的生理盐水中,震荡10min制备土壤悬液。
②用无菌吸管吸取1ml土壤悬液,加入到9ml灭菌的生理盐水中10倍稀释。
③按1::1稀释至10-3、10-4、10-5,将3块灭菌平板分别标记10-3、10-4、10-5 ,稀释过程应在无菌条件下进行。
土壤、水质检测——放线菌、霉菌、大肠杆菌的分离方法微生物因为体积小、质量轻、适应性强、繁殖能力强等特点,广泛分布于自然界中。
它们存在于食品、化妆品、饲料、环境等人们能触及的各个角落中。
某些微生物对产品的污染,不仅影响到产品本身的质量,更严重的是它危及消费者的健康和安全。
科标检测研究院凭借多年的微生物检测经验,可提供快速、高效、权威的第三方微生物检测服务,赢得社会业内广泛认可。
主要针对食品、医药、化妆品、农产品、一次性产品以及工业产品等进行微生物检测以及产品微生物污染分析。
以下介绍几种菌的分离方法:一、从土壤中分离放线菌1.制作高氏一号培养基,趁热注入培养皿中,凝成平板,待用。
2.称取土壤10克,放入装有100毫升无菌水的锥形瓶中,并加入10%酚10滴,以抑制细菌生长。
振荡10分钟,制成10-1菌悬液。
按照连续稀释分离法,进一步制成10-3菌悬液。
3.用移液管吸取0.1毫升10-3菌悬液,注入平板培养基上,用无菌玻璃刮刀将菌悬液均匀涂抹在整个培养基上。
然后将培养皿倒置于25-30℃温箱中,培养7-10天,培养基上会出现微生物菌落。
如果菌落的硬度较大,干燥致密,且与基质紧密结合,不易被针挑起,这就是放线菌菌落。
4.挑取放线菌菌落,接种于斜面培养基上。
二、从土壤中分离霉菌1.制作豆芽汗葡萄糖培养基,并添加80%乳酸数滴,以抑制细菌生长。
将培养皿中,凝成平板,待用。
2.称取10克土壤,按上述分离放线菌的方法制成10-4或10-5的菌悬液。
3.取0.1毫升菌悬液注入培养皿内培养基上,用玻璃刮刀涂抹均匀。
然后将培养皿倒置于2 5-30℃温箱内培养3-4天。
培养基上会出现微生物菌落。
霉菌菌落常长成绒状、棉絮状或蜘蛛网状,可根据这一特征寻找霉菌菌落。
4.挑取培养皿内的霉菌菌落接种于斜面培养基上三、从饮水中分离大肠杆菌1.制作伊红美蓝培养基,趁热注入培养皿中,凝成平板,待用。
2.用灭过菌的锥形瓶盛取河水或沟水,按1:10稀释。
放线菌资源及其活性物质研究概述杨勇;李昆太【摘要】放线菌是一类(G+C)含量高的革兰氏阳性细菌,以丰富的次级代谢产物出名,在医药、农林业等方面具有重要利用价值.简要概述了放线菌的资源分布、分类方法及其代谢产物生物学功能,讨论了目前放线菌开发领域存在的问题及解决办法,以期为放线菌的开发应用研究提供参考.【期刊名称】《生物灾害科学》【年(卷),期】2019(042)001【总页数】8页(P7-14)【关键词】放线菌;次级代谢产物;资源分布;分类方法;生物学功能【作者】杨勇;李昆太【作者单位】江西农业大学生物科学与工程学院/江西省农业微生物资源开发与利用工程实验室,江西南昌 330045;江西农业大学生物科学与工程学院/江西省农业微生物资源开发与利用工程实验室,江西南昌 330045【正文语种】中文【中图分类】S476.1我国是一个人口资源众多的农业大国,农业发展具有十分重要的经济基础地位,关系着国计民生与社会稳定[1]。
然而,随着植物病害的频发,农作物生长受阻、产量和品质降低,再加上人口资源不断增加,可耕地面积急剧减少,导致全世界粮食的供给问题日益突出。
植物病害主要包括细菌、真菌和病毒性病害3种,其中真菌性病害占主导地位[2],是影响世界农作物产量的重要因素。
随着工业科学的进步,化学农药对农业生产带来巨大经济效益的同时,却也导致了诸多问题,如:环境污染、人类健康日益恶化、病虫耐药性增强和破坏生态平衡等。
这些危害的恶性循环,不仅增加了农业生产成本,破坏环境生态系统,还给病虫害防治带来了极大的困难。
微生物农药是指利用微生物及其代谢物和基因产物作为防治病虫草等有害生物、促进植物生长的生物制剂,利用其进行植物病害生防具有高效、无污染、无残留等优点,且不易产生抗性,是生物防治的重要手段[3]。
放线菌是一类(G+C)含量高的生防菌,广泛分布于自然界中,具有复杂的次级代谢系统,能产生诸多结构新颖、生物活性显著的代谢产物,是新医药和新农药研制的源头,在植物病害生防中具有重要意义。
放线菌实验报告放线菌实验报告一、引言放线菌是一类广泛存在于土壤和水体中的微生物,其具有重要的生物学意义和应用价值。
本次实验旨在通过对放线菌的培养、鉴定和抗菌活性测试,了解放线菌的特性和应用前景。
二、材料与方法1. 放线菌培养基的制备:将葡萄糖、酵母粉、肉膏粉、胰蛋白胨等按一定比例溶解于蒸馏水中,加热煮沸,倒入培养瓶中,待冷却后加入抗生素。
2. 放线菌的采集:在适宜的环境中采集土壤或水样,并将样品分装于离心管中。
3. 放线菌的分离:取适量样品并加入适量的生理盐水,摇匀后进行稀释,取适量稀释液分别均匀涂布于放线菌培养基上。
4. 放线菌的纯化:从培养基上挑选出单菌落,进行连续传代,直至获得纯种放线菌。
5. 放线菌的鉴定:通过形态特征、生理生化特性和分子生物学方法对放线菌进行鉴定。
6. 抗菌活性测试:采用平板扩散法或孔隙扩散法,将放线菌菌液或提取物涂布于琼脂平板上,观察抑菌圈的形成情况。
三、结果与分析经过培养和分离,我们成功获得了多个放线菌菌株。
在鉴定过程中,我们观察到这些放线菌菌株形态各异,有的呈现棕黄色,有的呈现淡黄色,有的呈现灰白色。
此外,通过生理生化特性的检测,我们发现这些放线菌菌株对某些碳源和氮源具有不同的利用能力。
进一步的分子生物学分析结果显示,这些放线菌菌株属于不同的物种。
在抗菌活性测试中,我们选取了几个放线菌菌株进行了评估。
结果显示,这些放线菌菌株对多种细菌具有一定的抑制作用。
其中,某一放线菌菌株对金黄色葡萄球菌表现出了较强的抗菌活性,形成了较大的抑菌圈。
这表明该放线菌菌株可能具有潜在的抗生素生产能力。
四、讨论与展望通过本次实验,我们成功地获得了多个放线菌菌株,并对其进行了鉴定和抗菌活性测试。
然而,由于时间和设备的限制,我们并未对放线菌的抗生素产物进行深入研究。
因此,未来可以进一步探索这些放线菌菌株的抗生素产物,并对其进行分离、纯化和结构鉴定,以期发现新的抗生素。
此外,放线菌不仅具有抗菌活性,还具有其他生物活性物质的合成能力,如抗肿瘤物质、抗病毒物质等。
土壤中放线菌的分离简介放线菌(Actinomycetes)是一类广泛存在于地球各种土壤中的微生物,具有丰富的生物活性代谢产物和生物学功能。
分离土壤中的放线菌对于获得新的生物活性物质和解析放线菌菌株有着重要意义。
本文将介绍土壤中放线菌的分离方法及过程,并提供一些实践经验。
分离方法样品收集选择合适的样品收集地点至关重要。
一般情况下,草地、农田、果园等土壤中含有较丰富的放线菌资源。
在进行样品收集前,应先清理收集工具和容器,并使用无菌绳固定收集区域,避免外界杂质污染。
样品处理1.从采集的土壤中取得样品,并将其放入无菌锥形瓶中。
2.将样品添加至无菌水中,形成土壤悬浮液。
可以通过搅拌或振荡等方式充分悬浮土壤颗粒。
3.通过离心的方法,去除悬浮液中的大颗粒和杂质。
分离培养基的制备分离出放线菌的选择培养基非常重要,一般常用的培养基有:•考马斯琼脂培养基(Koj A)•聚芽孢杆菌琼脂培养基(SGA)•苯丁三唑糖脂琼脂培养基(BIS)其中,考马斯琼脂培养基是最为常用的一种,可以选择性地培养出放线菌。
分离操作1.在无菌条件下,将处理好的土壤悬浮液均匀涂布于分离培养基上。
2.用一次性平皿、玻璃块或玻璃棍等工具均匀划开土壤悬浮液,以增加放线菌的分离点。
3.培养皿密封后,放入恒温培养箱进行培养,通常在28-30℃下培养7-10天。
鉴定和筛选在培养箱中培养的结果显示出放线菌的单独菌落后,可以进行以下鉴定和筛选步骤:1.观察和记录菌落形态特征,包括颜色、形状、质地等。
2.进行显微镜下的形态观察,例如菌丝形态、芽孢形态等。
3.进行生理生化特性的鉴定,包括酶活性、产生代谢产物等。
4.进行16S rRNA或其它分子生物学方法的鉴定,以确定放线菌属别。
实践经验1.分离培养基的配制需要细心严谨,避免污染。
最好在无菌工作台环境下操作。
2.鉴定放线菌时,不同菌株之间可能存在形态和生理差异,需要谨慎观察和鉴定。
3.放线菌培养需要一定的时间,早期菌落的筛选和鉴定需耐心等待。
可编辑修改精选全文完整版土壤中放线菌的分离和纯化实验(精选5篇)第一篇:土壤中放线菌的分离和纯化实验土壤中放线菌的分离和纯化实验一、实验目的1、制作MS培养基的方法,掌握母液的保存方法。
2、掌握培养基的灭菌方法。
掌握外植体的消毒和超净工作台的使用。
4、掌握放线菌的分离纯化及染色的基本流程;5、掌握高氏一号培养基的配制方法;6、复习分离纯化放线菌的基本操作技术、培养方学会使用高压蒸汽灭菌锅。
7、培养微生物实验的设计思路和动手能力。
二、实验材料高压蒸汽锅、培养瓶、石斛的愈伤组织、超净工作台,酒精灯、酒精棉球、镊子、电子天平、称量纸、烧杯、量筒、显微镜、三角锥形瓶、无菌培养皿、接种环、酒精灯、分析天平;接种环、载玻片、盖玻片、玻璃珠、移液枪、剪刀三、实验原理植物组织培养即植物无菌培养技术,又称离体培养,是根据植物细胞具有全能性的理论,利用植物体离体的器官(如根、茎、叶、茎尖、花、果实等)、组织(如形成层、表皮、皮层、髓部细胞、胚乳等)第 1 页或细胞(如大孢子、小孢子、体细胞等)以及原生质体,在无菌和适宜的人工培养基及温度等人工条件下,能诱导出愈伤组织、不定芽、不定根,最后形成完整的植株的学科。
四、实验步骤1、配制MS培养基8L,称取马铃薯1600g、香蕉400g、蔗糖240g、活性炭8半勺、琼脂80g、配制母液。
2、配制培养液时应注意:①在使用提前配制的母液时,应在量取各种母液之前,轻轻摇动盛放母液的瓶子,如果发现瓶中有沉淀、悬浮物或被微生物污染,应立即淘汰这种母液,重新进行配制;为防止母液被微生物污染,有机母液放在冰箱里4℃保存;②用量筒或移液管量取培养基母液之前,必须用所量取的母液将量筒或移液管润洗2次;③量取母液时,最好将各种母液按将要量取的顺序写在纸上,量取1种,划掉1种,以免出错。
溶化琼脂用粗天平分别称取琼脂9 g、蔗糖30 g,放入1 000 mL的搪瓷量杯中,再加入蒸馏水750 mL,用电炉加热,边加热边用玻璃棒搅拌,直到液体呈半透明状。
土壤中细菌、放线菌、酵母菌及霉菌的分离与纯化一、实验目的1. 学习、掌握从土壤稀释分离、划线分离各类微生物的技术。
2. 学习从样品中分离、纯化出所需菌株。
3. 学习并掌握平板倾注法和斜面接种技术,了解培养细菌、放线菌、酵母菌及霉菌四大类微生物的培养条件和培养时间。
4. 学习平板菌落计数法。
二、实验原理将待分离的样品进行一定的稀释,使微生物的细胞(或孢子)尽量呈分散状态,选用有针对性的培养基,在不同温度、通风等条件下培养,让其长成一个纯种单个菌落。
要想获得某种微生物的纯培养,还需提供有利于该微生物生长繁殖的最适培养基及培养条件。
微生物四大类菌的分离培养基、培养温度、培养时间见表2-1所示。
表2-1 微生物四大类菌的分离和培养要求样品来源分离对象分离方法稀释度培养基名称培养温度/℃培养时间/d土样细菌稀释分离10-5,10-6,10-7牛肉膏蛋白胨30~37 1~2土样放线菌稀释分离10-3,10-4,10-5高氏1号28 5~7 土样霉菌稀释分离10-2,10-3,10-4马丁氏琼脂28~30 3~5面肥或土样酵母菌稀释分离10-4,10-5,10-6马铃薯葡萄糖28~30 2~3细菌分离平板细菌单菌落划线分离10-2 牛肉膏蛋白胨30~37 1~2三、实验材料1. 菌源土样2. 培养基牛肉膏蛋白胨培养基,马丁氏培养基,高氏合成1号培养基,马铃薯葡萄糖培养基(制平板和斜面),见附录Ⅲ。
3. 无菌水 250 mL锥形瓶,每瓶装99 mL无菌水(或95mL为分离霉菌用),内装10粒玻璃珠。
4.5 mL无菌水试管(每人5~7支)。
4. 其他物品无菌培养皿,无菌移液管,无菌玻璃涂棒(刮刀),称量纸,药勺,橡皮头,10%酚溶液。
(一)系列稀释平板法1. 取土样选定取样点,按对角交叉(五点法)取样。
先除去表层约2cm的土壤,将铲子插入土中数次,然后取2~10cm处的土壤。
盛土的容器应是无菌的。
将5点样品约1kg充分混匀,除去碎石、植物残根等杂物,装入已灭过菌的牛皮纸袋内,封好袋口,并记录取样地点、环境及日期。
一、实验目的1. 掌握土壤中放线菌的采集、分离和纯化方法。
2. 学习放线菌的培养技术,观察其生长特征。
3. 提取放线菌产生的活性物质,并对其活性进行初步鉴定。
二、实验原理放线菌是一类呈菌丝状生长的微生物,广泛分布于土壤、空气和水中。
放线菌与人类的生产和生活关系密切,许多临床应用的抗生素均由放线菌产生。
本实验通过土壤中放线菌的分离、培养和活性物质提取,旨在了解放线菌的生长特征及其产生的活性物质。
三、实验材料与仪器1. 实验材料:- 土壤样品- 高氏一号培养基- 种子培养基- 发酵培养基- 试剂:重铬酸钾、无菌水、酒精等2. 实验仪器:- 培养皿- 牛津杯- 接种环- 酒精灯- 无菌涂棒- 三角锥瓶- 高压蒸汽灭菌锅- 天平- 药匙- 烧杯- 量筒- 玻璃棒- 试管- 牛皮纸- 线绳四、实验步骤1. 土壤放线菌株的采集(1)选择取样点:选择有机质含量高的土壤,如菜地、林地等。
(2)采集样品:按对角交叉(五点法)取样,先除去表层约2cm的土壤,将铲子插入土中数次,然后取2~10cm处的土壤。
(3)将5点样品混合均匀,用无菌水稀释至10-1、10-2、10-3、10-4、10-5倍。
2. 放线菌的分离与纯化(1)制备高氏一号培养基平板:将高氏一号培养基加热溶解后,倒入培养皿中,待凝固后备用。
(2)将稀释后的土壤样品涂布于高氏一号培养基平板上。
(3)将平板置于37℃恒温培养箱中培养3~5天,观察菌落生长情况。
(4)挑取单菌落进行纯化,重复上述步骤,直至获得纯放线菌。
3. 放线菌的培养(1)将纯化后的放线菌接种于种子培养基中,置于37℃恒温培养箱中培养24小时。
(2)将种子液按一定比例接种于发酵培养基中,置于37℃恒温培养箱中发酵。
4. 活性物质提取(1)将发酵液离心分离,收集上清液。
(2)用重铬酸钾对上清液进行氧化反应,观察颜色变化,以初步鉴定活性物质。
五、实验结果与分析1. 放线菌分离与纯化:成功分离纯化出放线菌,菌落呈菌丝状,颜色多样。
山东农业科学 2008,4:68~71,90Shandong Agricultural Sciences收稿日期:2007-10-12;修回日期:2007-12-14基金项目:曲阜师范大学科研启动基金作者简介:司美茹(1977-),女,汉,硕士,讲师,主要从事土壤微生物研究。
E -mail:si m eiru1016@1631com济宁市土壤放线菌资源调查研究司美茹,苏 涛,李桂芝(曲阜师范大学生命科学学院,山东曲阜 273165) 摘 要:从济宁市采集土样,采用高氏1号琼脂和淀粉铵琼脂两种培养基分离放线菌,按国内外通用方法进行鉴定,并对土壤放线菌主要属———链霉菌属的类群进行分析与鉴定。
结果表明:同一样品在高氏1号琼脂培养基上分离得到的放线菌要高于淀粉铵培养基上的。
放线菌组成中,链霉菌占绝大多数,达放线菌总数的70%以上,其次是小单孢菌属,马杜拉放线菌属和诺卡氏菌属;链霉菌类群的组成较复杂,主要为白孢类群和粉红孢类群。
关键词:放线菌;链霉菌属;土壤;济宁中图分类号:S154138+3 文献标识号:A 文章编号:1001-4942(2008)04-0068-05I nvesti gati on on Soil Acti n o mycetes i n Ji n i n g C itySIMei -ru,S U Tao,L I Gui -zhi(College of L ife Science,Q ufu N or m al U niversity,Q ufu 273165,China )Abstract Soil sa mp les were collected fr om J ining city 1The actinomycetes were is olated and identified by s p reading the sa mp les on Gao 1agar mediu m and starch tartar agar mediu m 1A t the sa me ti m e,the gr oup s of Strep t omyces were als o identified and analyzed 1The results showed that the is olated nu mber of actinomycetes on Gao 1agar mediu m was larger than that on starch tartar agarmedium 1I n the genus of actinomycetes,Strep 2t o myces accounted f or more than 70%of the t otal ,and the next oneswere M icr omonos pora,Actinos porangir m and Nocardia 1The main gr oup s of strep t omyces were A lbos porus and Roseos porus 1Key words Actinomycetes;Strep t omyces;Soil;J ining 放线菌能产生抗生素等多种有益代谢产物,具有很高的经济价值[1,2]。
据知,目前世界上报道的上万种抗生素中,70%以上是放线菌产生的[3],且临床上使用的抗生素有三分之一来自放线菌[4]。
放线菌还可以合成淀粉酶、纤维素酶等代谢产物。
此外,放线菌的数量、种类与土壤肥力有着极密切的关系,是土壤肥力高低的标志之一[5~7]。
因此,放线菌的研究具有十分重要的科学价值和实用价值。
但是,目前国内放线菌区系调查及其资源开发研究的较少。
近年来,姜成林等对云南[8,9]、薛泉宏等对西藏[10~13]和蔡艳等[14]对青海高原有过详细报道,山东省报道较少。
山东省济宁市,北依泰山,南傍微山湖,暖温带季风性大陆气候,四季明显,降水较为充沛,常年降水量为89412mm ,境内平均太阳辐射量为503164kJ /k m 2,这些自然条件决定了济宁地区独特的土壤生态环境和该地区土壤放线菌资源的独特性。
因此,研究该地区土壤放线菌类群组成及生态分布规律,初步摸清土壤放线菌资源状况,以期为该地区放线菌资源的开发提供依据。
1 材料与方法111 土壤样品2005年4月从济宁地区采集土样,取2~20c m 深度的土壤,按覆盖植被类别采5个样品,每样品采集土样10份,带回实验室风干研磨备用。
112 方法11211 放线菌的分离与纯化 采用稀释平板涂抹法纯化[15],用高氏1号琼脂培养基培养。
分离时,为抑制真菌的生长添加少量重铬酸钾。
11212 鉴定培养基 高氏1号琼脂培养基,淀粉铵琼脂培养基,培养时间为7天。
11213 鉴定方法 用放线菌常规鉴定方法鉴定16]。
按1992年阎逊初放线菌分类系统进行归类[17]。
采用插片法培养,适时取片用光学显微镜观察形态特征[18]。
2 结果与分析211 土壤放线菌的数量从表1可看出,同一土样在两种培养基上的放线菌数量不同,高氏1号培养基分离到的放线菌数量(G)大多高于淀粉铵琼脂培养基的数量(N),G/N>1的土样占总数的80%。
不同土样之间放线菌数也存在很大差异,如2号冬青树下土壤放线菌的数量(×104)在高氏1号琼脂和淀粉铵琼脂培养基上分别为9514和10010,与5号小麦土壤的数量分别相差11倍和7倍。
大量研究结果表明,土壤中的微生物数量是水、热、植被等环境条件和土壤本身化学性质的综合反映,并且受上述条件影响[14]。
表1 济宁地区不同植被条件下土壤放线菌数量(×104个/g土)采样点植被土样号高氏1号琼脂培养基(G)淀粉铵琼脂培养基(N)G/N花园11311053102147冬青29514100100195苹果树367010*********蔬菜4122010520102153小麦5115010800101144212 土壤放线菌菌群21211 花园中土壤放线菌 从表2知,花园土壤放线菌在两种培养基上的分离数和总属数,高氏1号琼脂培养基皆高于淀粉铵琼脂培养基,这由表中的总属数和总数的G/N(1133和2147)可看出。
其中,链霉菌属、小单孢菌属、诺卡氏菌属在高氏1号琼脂培养基上分离数皆高于淀粉铵琼脂培养基上的,而马杜拉放线菌属则相反。
链霉菌属在两种培养基上的分离菌数皆最高。
在高氏1号琼脂培养基上,小单孢菌属和马杜拉放线菌属分离菌数大于淀粉铵琼脂培养基上的,在淀粉铵琼脂培养基上未分离到诺卡氏菌属。
从表2还可知,高氏1号培养基分离到的放线菌每个属的数量(G)大多数高于淀粉铵琼脂培养基上的数量(N),G/N>1的土样约占总数的84%,说明仅用高氏1号培养基就能较真实地反映土壤各属的状况。
表2 花园土壤的放线菌群(×104个/g土)属名分离菌数高氏1号琼脂(G)淀粉铵琼脂(N)G/N 链霉菌属Streptomyces1051034103109小单孢菌属M icromonospora10106101167马杜拉菌属Actinomadura14101310111诺卡氏菌属Nocardia2100∞总属数431133总数1311053102147 由表3知,在高氏1号琼脂培养基上的链霉菌类群总数和分离总数皆高于在淀粉铵琼脂培养基上的(G/N分别为1175和1198)。
其中,高氏1号琼脂培养基上的粉红孢类群、烬灰类群、金色类群的分离菌数皆高于淀粉铵琼脂培养基上的,而淡紫灰类群、蓝色类群、黄色类群在淀粉铵琼脂培养基上则没有。
在高氏1号琼脂培养基上粉红孢类群的分离菌数最高(4010),在淀粉铵琼脂培养基上白孢类群的分离菌数最高。
表3 花园土壤链霉菌各类群(×104个/g土)链霉菌属类群分离菌数高氏1号琼脂(G)淀粉铵琼脂(N)G/N粉红孢类群Roseos porus40103101313淡紫灰类群Lavendulae8100∞白孢类群A lbos porus151028100154蓝色类群Cyaneus3100∞烬灰类群Cinereus1610210810金色类群Aureus210110210黄色类群Mazis porus5100∞总类群数741175总数1051034101198 21212 冬青土壤放线菌 由表4可知,在高氏1号琼脂培养基上放线菌的分离菌总属数和总数高于淀粉铵琼脂培养基上的,其中,链霉菌属、小单孢菌属的分离菌数高于淀粉铵琼脂培养基上的,马杜拉放线菌属、诺卡氏菌属则相反。
放线单孢菌属和小多孢菌属在淀粉铵琼脂培养基上没有。
这由表中G/N值除马杜拉菌属和诺卡氏菌属小于1外,其余均大于1可看出。
由表5可知,在高氏1号琼脂培养基上的链霉菌类群总数和分离菌总数皆高于在淀粉铵琼脂培养基上的。
其中,在高氏1号琼脂培养基上的96 第4期 司美茹等:济宁市土壤放线菌资源调查研究烬灰类群、白孢类群、黄色类群、粉红孢类群分离菌数皆高于淀粉铵琼脂培养基上的,灰红紫类群、灰褐类群、蓝色类群、金色类群、青色类群只在高氏1号琼脂培养基上有,而绿色类群只在淀粉铵琼脂培养基上分离到。
这由表中G/N值除绿色类群小于1外,其余均大于1可看出。
表4 冬青下土壤放线菌群(×104个/g土)属名分离菌数高氏1号琼脂(G)淀粉铵琼脂(N)G/N链霉菌属Streptomyces7641053101414小单孢菌属M icromonospora60109107马杜拉菌属Actinomadura501015100133诺卡氏菌属Nocardia201023100109放线单孢菌属Actinomonospora20100∞小多孢菌属M icropolyspora40100∞总属数64115总数95410100109154 表5 冬青土壤链霉菌类群组成(×104个/g土)链霉菌属类群分离菌数高氏1号琼脂(G)淀粉铵琼脂(N)G/N灰红紫类群Griseorubr ovi olaceus260100∞灰褐类群Griseofuaeus60100∞烬灰类群Cinereus150818175白孢类群A lbosporus13016811蓝色类群Cyaneus500∞黄色类群Maizsporus50105粉红孢类群Roseosporus3014211金色类群Aureus200∞青色类群Cyans porus140∞绿色类群V iritis porus050总类群数95118总数76453141421213 苹果树下土壤放线菌 由表6可知,在高氏1号琼脂培养基上的放线菌的总分离数和总属数均高于在淀粉铵琼脂培养基上的,这由表中G/N值均大于或等于1可看出。