(1)T是无回路的连通图; (2)T是无回路图,且e=n-1,其中e是边数; (3)T是连通图,且e=n-1; (4) T是无回路图,且在T的任何两个不相邻的顶点之
间添加一边,恰得一条回路(称T为最大无回路图); (5) T是连通图,但删去任一边后,便不连通(称T为
最小连通图)。
(6) T的每一对不同的顶点之间有唯一的一条路。
(n1-1)+(n2-1)+ ……+(n -1) =(n1+n2+……+n )= n-
10.1 树及其性质
定理10.2 在任一棵非平凡树T中,至少有两片树
叶。
证明方法:分而治之/反证法。
证明:
若T中只有一片树叶,则 d(vi)≥2(n1)+1=2n-1。
若T中没有树叶,则d(vi)≥2n。 均与d(vi)=2e=2(n-1)矛盾,所以在任
路与生成树的补必有一公共边,所以在r中
必存在一条边fT’; 对于树T(边集至少为
{ e1 ,…..., ei , f }),若用ei+1 代换f,得一棵新 树T1(边集至少为{e1 ,…..., ei , ei+1 }) 。则T1 的权W(T1)=W(T1)+W(ei+1)-W(f) 。
因为T为最小生成树,所以W(T)≤W(T1), 则W(ei+1)≥W(f);又根据T’生成法,自
给出图和生成树,求基本割集组和基本 回路组。
10.2 生成树与割集
四、树的基本变换 图10.4 1 定义10.8(树的基本变换)
设连通图G的生成树T,通过上述加一 弦,再删去一枝得到另一棵生成树,这 种变换称为树的基本变换。
2 定义10.9(距离)
而 记不为设d出连(T现通i, 在T图j)T。Gj的的边生数成称树为Ti和Ti和Tj,Tj的出距现离在,Ti