2014届高三数学一轮复习单元训练:直线与圆
- 格式:doc
- 大小:178.00 KB
- 文档页数:4
内蒙古大学附中2014版《创新设》高考数学一轮复习单元能力提升训练:直线与圆 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若2222(0)a b c c +=≠,则直线0ax by c ++=被圆221x y +=所截得的弦长为( ) A .12B .1C .22D .2【答案】D2.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +( )A .最小值为15B .最小值为55C .最大值为15D .最大值为55【答案】A3.与直线3450x y -+=关于x 轴对称的直线方程为( )A .3450x y +-=B .3450x y ++=C .3450x y -+-=D .3450x y -++=【答案】B4.将圆x 2+y 2-2x-4y+1=0平分的直线是( )A .01=-+y xB .03=++y xC .03=+-y xD .01=+-y x【答案】D5.直线01=-+By Ax 在y 轴上的截距是1-,而且它的倾斜角是直线333=-y x 的倾斜角的二倍,则( ) A . 1,3==B A B . 1,3-=-=B A C . 1,3-==B AD . 1,3=-=B A【答案】B6.两圆C 1:x 2+y 2+2x =0,C 2:x 2+y 2+4y +3=0的位置关系为( )A .外离B . 内含C .相交D . 相切【答案】A7.若直线013=--y x 到直线0=-ay x 的角为6π,则实数a 的值等于( ) A .0B .3C .0或3D .33-8.圆222210x y x y +-++=的圆心到直线10x y -+=的距离是( )A .12B .32 C .22D .322【答案】D9.如图,直线l 的斜率为( )A . 33- B . 3-C .33 D . 3【答案】D10.直线mx-y+2m+1=0经过一定点,则该点的坐标是( )A .(-2,1)B . (2,1)C . (1,-2)D . (1,2)【答案】A 11.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为( )A .22 B .223 C .210 D .2【答案】C 12.已知两条直线和互相垂直,则等于( ) A .2 B .1C .0D .【答案】D第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.①已知点00(,)p x y 在曲线()0f x y ⋅=上,p 也在曲线()g x y ⋅点上,则p 在曲线()()0f x y g x y λ⋅+⋅=上。
北京市2014届高三理科数学一轮复习试题选编20:直线与圆一、选择题1 .(北京市房山区2013届高三上学期期末考试数学理试题 )已知圆22:21C x y x +-=,直线:(1)1l y k x =-+,则与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心 【答案】C2 .(2013北京顺义二模数学理科试题及答案)设R ∈n m ,,若直线01:=-+ny mx l 与x 轴相交于点A ,与y 轴相交于点B ,且坐标原点O 到直线l 的距离为3,则AOB ∆的面积S 的最小值为 ( ) A .21B .2C .3D .4【答案】C .3 .(2013北京昌平二模数学理科试题及答案)圆22(2)1x y +-=的圆心到直线3,2x t y t =+⎧⎨=--⎩(t 为参数)的距离为 ( )A.2B .1CD.【答案】A .4 .(2013北京房山二模数学理科试题及答案)定义运算a b ⎡⎢⎣ c d ⎤⎥⎦x ax cy y bx dy +⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦,称x a y b '⎡⎤⎡=⎢⎥⎢'⎣⎦⎣ c d ⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦为将点(),x y 映到点(),x y ''的一次变换.若x y '⎡⎤⎢⎥'⎣⎦=2p ⎡⎢⎣ 1q -⎤⎥⎦x y ⎡⎤⎢⎥⎣⎦把直线y kx =上的各点映到这点本身,而把直线y mx =上的各点映到这点关于原点对称的点.则,,,k m p q 的值依次是 ( )A .1,2,3,3k m p q ==-==B .1,3,3,2k m p q ====-C .2,3,3,1k m p q =-===D .2,1,3,3k m p q =-===【答案】B .5 .(2013届北京市延庆县一模数学理)已知直线01)1(:1=+++y a ax l ,02:2=++ay x l ,则“2-=a ”是“21l l ⊥”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 6 .(2013届北京丰台区一模理科)动圆C 经过点F(1,0),并且与直线x=-1相切,若动圆C与直线1y x =+总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π【答案】D 二、填空题7 .(2013北京海淀二模数学理科试题及答案)在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____;(Ⅱ)曲线W 上的点到原点距离的最小值为______. 【答案】②③;28 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知圆C :22680x y x +-+=,则圆心C 的坐标为 ;若直线y kx =与圆C 相切,且切点在第四象限,则k = .【答案】(3,0)4-解:圆的标准方程为22(3)1x y -+=,所以圆心坐标为(3,0),半径为1.要使直线y kx =与圆C 相切,且切点在第四象限,所以有0k <。
直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为()A.7 B.2 2C.3 D. 2解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x2+y2-6x+8=0可化为(x-3)2+y2=1,则圆心(3,0)到直线y=x+1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3. 答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1. 故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2= 2×100-68=8.[答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3. 3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为 2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题设知,圆C 的方程为 (x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0); 当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.②又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ=(6,-2),所以OA +OB 与PQ共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x+2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0, 显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:433.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0.因为圆心O 1(0,-1)到直线AB 的距离为|r 22-12|42= 4-⎝⎛⎭⎫2222=2,解得r22=4或r22=20.故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
2014届高三数学理科第一轮复习单元过关( 12) 考查:直线与圆一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1. 若直线l 与直线1y =,7x =分别交于点P 、Q ,且线段P Q 的中点坐标为(1,1)-,则直线l 的斜率为( ) A.13 B.13- C.32- D.23 2.若直线1:60l x ay ++=与2:(2)320l a x y a -++=平行,则1l 与2l 间的距离为( )B.33.如果0A C ⋅<,且0B C ⋅<,那么直线0Ax By C ++=不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限4.直线20ax y a -+=与圆229x y +=的位置关系是( )A .相离B .相切C .相交D .不确定5. 若函数8y ax =+与12y x b =-+的图象关于直线y x =对称,则a b +=( )A.1B.2D.46.直线1l 的斜率为2,12//l l ,直线2l 过点(1,1)-)且与y 轴交于点P ,则P 点坐标为( )A .(3,0)B .(3,0)-C .(0,3)-D .(0,3)7. 已知直线1l 与圆2220x y y ++=相切,且与直线2:3460l x y +-=平行,则直线l 1的方程是( )A .3410x y +-=B .3410x y ++=或3490x y +-=C .3490x y ++=D .3410x y +-=或3490x y ++=8.若圆222()()1x a y b b -+-=+始终平分圆22(1)(1)4x y +++=的周长,则a b 、 满足的关系是( )A .22230a a b ++-=B .222250a b a b ++++=C .22250a a b +++=D .22250a a b --+=二、填空题: (本大题共6小题,每小题5分,共30分,把答案填在答题卷中....相应横线上)9. 圆心在原点且与直线24x y +=相切的圆的方程是 .10.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是___________.11.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是________.12.已知点(1,3),(2,1)A B --,若直线:(2)1l y k x =-+与线段AB 相交,则k 的取值范围是________.13.圆心在曲线3(0)y x x=>上,且与直线3430x y ++=相切的面积最小的圆的方程为14.已知实数x y 、满足250x y ++=,的最小值为 .二、填空题(每小题5分,共30分)9.____________________. 10.___________________. 11. ____________________.12.___________________. 13. ___________________. 14.____________________.三、解答题:本大题共4小题,解答应写出文字说明,证明过程或演算步骤15.已知直线l 与两坐标轴围成的三角形的面积为3,且经过点(3,4)A -,求直线l 的方程.16.不同两点P 、Q 的坐标分别为(,),(3,3)a b b a --,求:()Ⅰ线段P Q 的垂直平分线l 的方程;()Ⅱ圆22(2)(3)1x y -+-=关于直线l 对称的圆的方程.17.已知圆22:2440C x y x y +-+-=,是否存在斜率为1的直线l ,使以l 被圆截得的弦AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,说明理由.18.在直角坐标系xOy 中,以O为圆心的圆与直线40x +=相切. ()Ⅰ求圆O 的方程;()Ⅱ圆O 与x 轴相交于A B 、两点,圆内的动点P 使PA PO PB、、|成等比数列,求PA PB ⋅的取值范围.2014届高三数学理科第一轮复习单元过关( 12)参考答案1解析:选B.由直线l 与直线y =1,x =7分别交于点P 、Q ,可设P (x 1,1),Q (7,y 1),再由线段PQ 的中点坐标为(1,-1),可解得:x 1=-5,y 1=-3.即直线l 上有两点P (-5,1),Q (7,-3),代入斜率公式可解得直线l 的斜率为k =1+3-5-7=-13.故选B.2 [解析]由l 1∥l 2知3=a(a -2)且2a ≠6(a -2),2a 2≠18,求得a =-1,l 1:x -y +6=0,l 2:x -y +23=0,两条平行直线l 1与l 2间的距离为d =|6-23|12+(-1)2=823.故选B. 3.C 解析:由A·C <0及B·C <0,可知A ≠0,B ≠0,又直线Ax +By +C =0过⎝⎛⎭⎫-CA ,0,⎝⎛⎭⎫0,-CB ,且-C A >0,-C B>0,∴直线不过第三象限.4[解析]直线ax -y +2a =0⇒a(x +2)-y =0,即直线恒过点(-2,0),∵点(-2,0)在圆内,所以直线与圆相交,故选C.5解析:直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x =ay +8与y =-12x+b 为同一直线,故得⎩⎪⎨⎪⎧a =-2b =4,所以a +b =2故选B6.解析:∵点P 在y 轴上,∴设P(0,y),又∵kl 1=2,l 1∥l 2,∴kl 2=y -10-(-1)=y -1=2,∴y =3,∴P(0,3).答案:D7.D 解析:设直线l 1的方程为3x +4y +m =0.∵直线l 1与圆x 2+y 2+2y =0相切,∴|-4+m|32+42=1.∴|m -4|=5.∴m =-1或m =9.∴直线l 1的方程为3x +4y -1=0或3x +4y +9=0.8.解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心,两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0,将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0.答案C9解析:由题意,半径R =41+22=45,所以圆的方程为x 2+y 2=165,故填x 2+y 2=165.10解析:设圆上任一点为Q(s ,t),PQ 的中点为A(x ,y),则⎩⎨⎧x =4+s 2y =-2+t2,解得⎩⎪⎨⎪⎧s =2x -4t =2y +2,将其代入圆的方程,得(2x -4)2+(2y +2)2=4,整理得(x -2)2+(y +1)2=1 11.解析 (数形结合法)由已知直线l 恒过定点P(2,1),如右图.若l 与线AB 相交,则k PA ≤k ≤k PB ,∵k PA =-2,k PB =12,∴-2≤k ≤1212.[解析] 本题考查了直线与圆的位置关系,利用数形结合可解决此题,属中档题.要使圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,只需满足圆心到直线的距离小于1即可.即|c|122+52<1,解|c|<13,∴-13<c<13.13.解析:设圆心(a ,3a )(a>0),则圆心到直线的距离d =|3a +12a +3|5,而d ≥15(23a ·12a +3)=3,当且仅当3a =12a ,即a =2时,取“=”,此时圆心为(2,32),半径为3,圆的方程为(x -2)2+(y -32)2=9.14.解析:x 2+y 2表示点(x ,y)到原点的距离.根据数形结合得x 2+y 2的最小值为原点到直线2x +y +5=0的距离,即d =55= 5.15.解析:设直线l 的方程是y =k(x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4,由已知,得(3k +4)(4k +3)=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. 16.【解析】(1)∵313P a bk b a--==--Q ,∴11l P k k =-=-Q , ∵P Q 的中点坐标为33(,)22,直线l 的方程为3x y +=.(2)设所求圆的圆心为(,)a b ,则31223322l b k a a b -⎧⨯=-⎪⎪-⎨++⎪+=⎪⎩,解得01a b =⎧⎨=⎩, ∴所求圆的圆方程为22(1)1x y +-=.17解析 假设存在斜率为1的直线l ,满足题意,则OA ⊥OB.设直线l 的方程是y =x +b ,其与圆C 的交点A ,B 的坐标分别为A(x 1,y 1),B(x 2,y 2)则y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0①由⎩⎪⎨⎪⎧y =x +b ,x 2+y 2-2x +4y -4=0消去y 得: 2x 2+2(b +1)x +b 2+4b -4=0, ∴x 1+x 2=-(b +1),x 1x 2=12(b 2+4b -4),②y 1y 2=(x 1+b)(x 2+b)=x 1x 2+b(x 1+x 2)+b 2=12(b 2+4b -4)-b 2-b +b 2=12(b 2+2b -4).③把②③式代入①式,得b 2+3b -4=0,解得b =1或b =-4,且b =1或b =-4都使得Δ=4(b +1)2-8(b 2+4b -4)>0成立.故存在直线l 满足题意,其方程为y =x +1或y =x -4.法二:可设直线l :0x y c -+=,经过A B 、的圆:22:244()0C x y x y x y c λ+-+-+-+=分析18.解析:(1)依题设,圆O 的半径r 等于原点O 到直线x -3y +4=0的距离,即r =41+3=2.所以圆O 的方程为x 2+y 2=4.(2)不妨设A(x 1,0),B(x 2,0),x 1<x 2.由x 2=4即得A(-2,0),B(2,0).设P(x ,y),由|PA →|,|PO →|,|PB →|成等比数列,得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2,即x 2-y 2=2.PA →·PB →=(-2-x ,-y)· (2-x ,-y)=x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4x 2-y 2=2,由此得y 2<1.所以PA →·PB →的取值范围为[-2,0).。
东南大学附中2014三维设计高考数学一轮单元复习精品练习:直线与圆本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.由圆x 2+y 2=4外一动点P 向该圆引两条切线PA 和PB ,若保持∠APB=60°,则点P 的轨迹方程为( )A . x 2+y 2=8B . x 2+y 2=16C . x 2+y 2=32D . x 2+y 2=64 【答案】B2.直线0Ax By +=,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为A,B 的值,则表示成不同直线的条数是( ) A .2 B .12C .22D .25【答案】C 3.由直线1y x =+上的一点向圆引切线,则切线长的最小值为( )A .1BC .D .3【答案】B4.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( )A . 1)37()3(22=-+-y x B .1)1()2(22=-+-y x C . 1)3()1(22=-+-y x D .1)1()23(22=-+-y x 【答案】B5.下列四个命题中,正确命题有( )①直线方程的一般式为Ax + By + C = 0 ②k 1·k 2 = –1为两直线垂直的充要条件③k 1 = k 2为两直线平行的必要非充分条件 ④l :A 1x + B 1y + C 1 = 0和l 2:A 2x + B 2y + C 2 = 0,(B 1≠0,B 2≠0,A 1A 2 + B 1B 2≠0),则直线l 1到l 2的角θ的正切值为21211221tan B B A A B A B A +-=θA .0个B .1个C .2个D .3个【答案】B6.圆22:420C x y x y +-+=关于直线1y x =+对称的圆的方程是( )A . 22(1)(2)5x y ++-= B . 22(4)(1)5x y ++-= C . 22(2)(3)5x y ++-= D . 22(2)(3)5x y -++=【答案】B7.若圆221x y +=与直线340x y m -+=相切,则m 的值等于( )A .5B .5-C .5或5-D .15或15- 【答案】C 8.已知两点()()7,4,5,6AB --,则线段AB 的垂直平分线的方程为( )A .56110x y ++=B .6510x y --=C .56110x y +-=D .6510x y -+=【答案】B 9.直线3x +2y= 1的倾斜角是( ) A .arctan 23B .arctan ( –23) C .π + arctan 23D .π + arctan ( –23) 【答案】D10.设圆222)5()3(r y x =+++上有且只有两点到直线234=-y x 的距离等于1,则圆的半径r 的取值范围为( ) A .561<<r B .54>r C .5654<<r D .1>r【答案】C11.圆122=+y x 上的点到直线02543=-+y x 的距离的最小值为( )A .6B .2C .3D .4【答案】D12.在平面直角坐标系xOy 中,直线3x+4y-5=0与圆2x +2y =4相交于A 、B 两点,则弦AB 的长等于( )A .B .C .D . 1【答案】C第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若三条直线1l :032=-+y x ,2l :023=+-y x 和3l :0=+y ax 不能构成三角形,则a 的值为【答案】13a =-或2a =或3a =-14.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040,(a 为常数)表示的平面区域的面积是9,那么a 的值为____________. 【答案】115.若方程02222=++-y x my x 表示两条直线,则m 的取值是 . 【答案】116.过原点O 作圆x 2+y 2--6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为 。
南京大学附中2014届高三数学一轮复习单元训练:直线与圆本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线220(0,0)ax by a b -+=>>经过圆222410x y x y ++-+=的圆心,则ba 11+的最小值是( ) A .41 B .4C .21 D .2【答案】B2.点(2,1)到直线3x -4y + 5=0的距离是( )A .57B .75C .257D .725【答案】A3.已知圆x 2+y 2=r 2在曲线|x|+|y|=4的内部,则半径r 的范围是( )A .0<r<22B .0<r<2C . 0<r<2D .0<r<4【答案】A4.对任意实数m ,直线(1)260m x m y -++=必经过的定点是( )A .(1,0)B .(0,3)-C .(6,3)-D . 63(,)1m m-- 【答案】C5.圆06422=+-+y x y x 和圆0622=-+x y x 交于A 、B 两点,则AB 的垂直平分线的方程是( )A .x+y+3=0B .2x-y-5=0C . 3x-y-9=0D .4x-3y+7=0【答案】C6.点(a,b)关于直线x+y=0对称的点是( )A .(-a,-b)B .(a,-b)C .(b,a)D .(-b,-a)【答案】D7.不等边ABC ∆的三个内角所对边分别是a ,b ,c ,且lgsin,lgsin ,lgsin A B C 成等差数列,则直线2sin sin x A y A a +=与直线2sin sin x B y C c +=的位置关系是( ) A .平行 B .垂直C .重合D .相交但不垂直【答案】C8.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,则一共可作( )个A .3B .4C .5D .6【答案】C 9.圆心为,且过点的圆的方程为( )A .B .C .D .【答案】A10.已知直线l 的倾斜角为300,则直线的斜率k 值为( )A .33 B .21 C .3D .23 【答案】A11.已知直线过定点(-1,1),则“直线的斜率为0”是“直线与圆122=+y x 相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A12.过点(1,0)M 和(0,1)N 的直线方程是( )A .10x y +-=B .10x y -+=C .10x y --=D .10x y ++=【答案】A第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.过点P(2,3)且在两轴上的截距相等的直线方程是____________. 【答案】32050x y x y -=+-=与14.若直线)0,0(>>=+b a ab by ax 与圆122=+y x 相切,则ab 的最小值是 . 【答案】215.已知圆224x y +=与圆22260x y ay ++-=(a>0)的公共弦的长为23,则=a 。
北京体育大学附中2014版《创新设计》高考数学一轮复习单元突破:直线与圆本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.平行直线x -y+1=0和x -y -3=0之间的距离是( )A .22B .2C .4D .2【答案】A2.直线30x y m -+=与圆22220x y x +--=相切, 则实数m 等于( )A . 3-B . 33C .33-或3D .33-或33【答案】C3.若直线3)1(:1=-+y a ax l 与2)32()1(:2=++-y a x a l 互相垂直,则a 的值为( )A .-3B .1C .0或-23D .1或-3【答案】D4.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 【答案】C5.直线xsin β+ycos θ=2+sin θ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能 【答案】B6.直线3440x y --=被圆22(3)9x y -+=截得的弦长为( ) A .22 B . 42C .4D .2【答案】B7.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A . 2B . 21+C . 221+D . 221+【答案】B8.一条光线从点M (5,3)射出,与x 轴的正方向成α角,遇x 轴后反射,若3tan =α,则反射光线所在的直线方程为( )A .123-=x yB .123--=x yC .123+=x yD .123+-=x y【答案】D9.如果把圆沿向量平移到,且与直线相切,则的值为( )A .2或-B .2或C .-2或D .-2或-【答案】A10.已知两条直线2-=ax y 和01)2(3=++-y a x 互相平行,则a 等于( )A .1或-3B .-1或3C .1或3D .-1或3 【答案】A11.已知入射光线所在直线的方程为2x-y-4=0,经x 轴反射,则反射光线所在直线的方程是( )A .24y x =--B .24y x =-+C .112y x =+ D .112y x =-- 【答案】B12.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为( )A . 42-+B .32-+C .422-+D .322-+【答案】D第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线y =x +b 与曲线21y x -=恰有一个交点,则实数的b 的取值范围是____________ 【答案】}2{]1,1(--14.已知AC BD 、为圆O :224x y +=的两条相互垂直的弦,垂足为()1,2M ,则四边形ABCD 的面积的最大值为 。
高考一轮复习备考试题直线与圆一、填空题1、(2014年江苏高考)在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为 ▲ .2、(2012年江苏高考)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 3、(2015届江苏南通市直中学高三9月调研)已知圆22:24200C x y x y +---=,直线l 过点P (3,1),则当直线l 被圆C 截得的弦长最短时,直线l 的方程为 ▲4、(2015届江苏苏州高三9月调研)已知圆()()()22:10C x a y a a -+-=>与直线3y x =相交于,P Q 两点,则当CPQ ∆的面积最大时,此时实数a 的值为 ▲5、(南京市2014届高三第三次模拟)在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,则圆M 的方程为6、(南通市2014届高三第三次调研)在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 ▲ .7、(2014江苏百校联考一)已知圆22:(2)1C x y -+=,点P 在直线:10l x y ++=上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标0x 的取值范围是 .8、(南通市2014届高三第二次模拟)在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲9、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ 10、(苏锡常镇四市2014届高三3月教学情况调研(一))在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 ▲11、(江苏省诚贤中学2014届高三12月月考)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 ▲12、(江苏省灌云高级中学2014届高三第三次学情调研)已知点Q b a p 与点),((1,0)在直线0132=+-y x 的两侧,则下列说法(1)0132>+-b a (2)0≠a 时,ab有最小值,无最大值 (3)M b a R M >+∈∃+22,使恒成立 (4)且0>a 1≠a ,时0>b , 则1-a b 的取值范围为(-),32()31,∞+⋃-∞ 其中正确的是 (把你认为所有正确的命题的序号都填上)二、解答题1、(2013年江苏高考)本小题满分14分。
2014届高三数学一轮复习单元训练:直线与圆本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.与直线l 1:012=--y mmx 垂直于点P (2,1)的直线l 2的方程为( ) A .01=-+y x B .03=--y x C .01=--y x D .03=-+y x 【答案】D2.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则直线AB 的的方程是( )A .30x y +=B . 3+0x y =C . 30x y -=D . 350y x -= 【答案】A3.过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为( )A . +2y-3=0B .2x+y-3=0C .x+y-2=0D .2x+y+2=0【答案】B 4.“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【答案】B5.平行直线x -y+1=0和x -y -3=0之间的距离是( )A .22 B .2 C .4 D .2 【答案】A6.过点(1,2)且与原点的距离最大的直线方程是( )A .2x+y-4=0B . x+2y-5=0C .x+3y-7=0D .3x+y-5=0 【答案】B7.当圆x2+y2+2x+ky+k2=0的面积最大时,圆心坐标是( )A .(0,-1)B .(-1,0)C .(1,-1)D .(-1,1) 【答案】B8.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( ) A .平行B .垂直C .相交但不垂直D .重合【答案】B9.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若p 、q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(),p q 是点M 的“距离坐标”.已知常数0≥p ,0≥q ,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0,1p q ==,则“距离坐标”为(0,1)的点有且仅有2个;③若1,2p q ==,则“距离坐标”为(1,2)的点有且仅有4个.上述命题中,正确命题的个数是( )A .0B .1C .2D .3 【答案】C10.已知圆22:1,O x y +=点()00,Px y 在直线20x y --=上,O 为坐标原点.若圆上存在点Q 使得30OPQ ∠= ,则0x 的取值范围为( )A .[]1,1-B .[]0,1C .[]0,2D .[]2,2- 【答案】C11.曲线|x ―1|+|y ―1|=1所围成的图形的面积为( )A .1B .2C .4D .2 【答案】B12.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A . 2B . 21+C . 221+D . 221+【答案】B 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若实数,,a b c 成等差数列,点(1,0)P -在动直线0ax by c ++=上的射影为M ,点(3,3)N ,则线段MN 长度的最大值是 .【答案】514.已知曲线y =3x 2+2x 在点(1,5)处的切线与直线2ax -y -6=0平行,则a = .【答案】415.已知圆50)3()6(10)1()2(222221=+++=-+-y x C y x C :与圆:交于A 、B 两点,则AB 所在的直线方程是 。
【答案】2x+y=016.已知圆22:230M x y mx +--=(0)m <的半径为2,则其圆心坐标为 。
【答案】(1,0)-三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B 旋转,如果两条平行直线间的距离为d.求:1)d 的变化范围;2)当d 取最大值时两条直线的方程。
【答案】 (1)方法一:①当两条直线的斜率不存在时,即两直线分别为x =6和x =-3,则它们之间的距离为9.②当两条直线的斜率存在时,设这两条直线方程为l 1:y -2=k(x -6),l 2:y +1=k(x +3),即l 1:kx -y -6k +2=0,l 2:kx -y +3k -1=0,∴d =|3k -1+6k -2|k 2+1=3|3k -1|k 2+1. 即(81-d 2)k 2-54k +9-d 2=0.∵k ∈R ,且d ≠9,d >0,∴Δ=(-54)2-4(81-d 2)(9-d 2)≥0,即0<d ≤310且d ≠9.综合①②可知,所求d 的变化范围为(0,310].方法二:如图所示,显然有0<d ≤|AB|.而|AB|= 6+3 2+ 2+1 2=310.故所求的d 的变化范围为(0,310].(2)由图可知,当d 取最大值时,两直线垂直于AB.而k AB =2- -1 6- -3 =13, ∴所求直线的斜率为-3. 故所求的直线方程分别为y -2=-3(x -6),y +1=-3(x +3),即3x +y -20=0和3x +y +10=0. 18.已知椭圆的一个顶点为B (0,-1),焦点在x 轴上,若右焦点F 到直线x -y +22=0的距离为3.(1)、求椭圆的方程;(2)、设直线l 与椭圆相交于不同的两点M 、N, 直线l 的斜率为k (k ≠0),当|BM |=|BN |时,求直线l 纵截距的取值范围.【答案】(1)、椭圆方程为 x 2+3y 2=3 (2)设P 为弦MN 的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k 2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k BP =km 31k 3m 2++-.由MN ⊥BP ,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=(2m-1)/3>0.解得m >1/2.故所求m 的取值范围为(1/2,2).19.已知两条直线12:60,(2)320,l x my l m x y m ++==-++= 求m 为何值时两条直线: (1)相交; (2)平行;(3)重合; (4)垂直.【答案】(1)由12210A B A B -≠,得23(2)0230(3)(1)01m m m m m m m --≠⇒--≠⇒-+≠⇒≠-且3m ≠(2)由1221122100A B A B AC A C -=⎧⎨-≠⎩,得(3)(1)0126(2)0m m m m m -+=⎧⇒=-⎨--≠⎩(3)由1221122100A B A B AC A C -=⎧⎨-=⎩,得(3)(1)0326(2)0m m m m m -+=⎧⇒=⎨--=⎩ (4)由12120A A B B +=,得1(2)302m m m -+=⇒=. 20.已知:以点C (t, 2t)(t ∈R , t ≠ 0)为圆心的圆与x 轴交于点O, A ,与y 轴交于点O, B ,其中O 为原点. (Ⅰ)当t=2时,求圆C 的方程;(Ⅱ)求证:△OAB 的面积为定值;(Ⅲ)设直线y = –2x+4与圆C 交于点M, N ,若ON OM =,求圆C 的方程. 【答案】(Ⅰ)圆C 的方程是 22(2)(1)5x y -+-= (Ⅱ)O C 过原点圆 ,2224t t OC+=∴.设圆C 的方程是 22224)2()(t t t y t x +=-+- 令0=x ,得t y y 4,021==;令0=y ,得t x x 2,021== 4|2||4|2121=⨯⨯=⨯=∴∆t tOB OA S OAB ,即:OAB ∆的面积为定值. (Ⅲ),,CN CM ON OM == OC ∴垂直平分线段MN . 21,2=∴-=oc MN k k ,∴直线OC 的方程是x y 21=.t t 212=∴,解得:22-==t t 或 当2=t 时,圆心C 的坐标为)1,2(,5=OC , 此时C 到直线42+-=x y 的距离551<=d ,21. (1)求经过直线x-y=1与2x+y=2的交点,且平行于直线x+2y-3=0的直线方程。
(2)在直线x-y+4=0 上求一点P, 使它到点 M (-2,-4)、N(4,6)的距离相等。
【答案】(1)联立x-y=1与2x+y=2得⎩⎨⎧=+=-221y x y x 解得0,1==y x∴直线x-y=1与2x+y=2的交点是()0,1将()0,1代入x+2y+m=0求得m=-1∴所求直线方程为x+2y-1=0 (法二)易知所求直线的斜率21-=k ,由点斜式得()1210--=-x y 化简得x+2y-1=0(2)解:由直线x -y +4=0,得y =x +4,点P 在该直线上.∴可设P 点的坐标为(a ,a +4).∴[]()[]()()()()()()()()()()23a 2482248264444)2(222222222222-=-+-=+++∴-+-=+++-++-=--++--解得a a a a a a a a a a a a 解得a =-32,从而a +4=-32+4=52. ∴P ⎝⎛⎭⎫-32,52 22.求经过点)2,2(-M 以及圆0622=-+x y x与圆422=+y x 交点的圆的方程。
【答案】设过圆0622=-+x y x 与圆422=+y x 交点的圆的方程为: 0)4(62222=-++-+y x x y x λ ………①把点M 的坐标)2,2(-代入①式得1=λ,把1=λ代入①并化简得02322=--+x y x ,∴所求圆的方程为:02322=--+x y x.。