2019沪科版九年级数学上册2151反比例函数的概念教案语文
- 格式:doc
- 大小:61.11 KB
- 文档页数:6
沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,这部分内容是在学生已经掌握了函数概念、正比例函数的基础上进行的。
本节内容主要介绍反比例函数的定义、性质和图像,以及如何利用反比例函数解决实际问题。
教材通过具体的例子引导学生理解反比例函数的概念,并通过大量的练习让学生熟练掌握反比例函数的性质和图像。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。
但是,反比例函数的概念和性质与正比例函数有很大的不同,学生可能难以理解和接受。
此外,学生的数学思维能力和解决问题的能力参差不齐,对于一些抽象的数学概念,部分学生可能难以理解。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够绘制反比例函数的图像,并运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图像的绘制和运用。
五. 教学方法1.讲授法:讲解反比例函数的概念和性质,引导学生理解反比例函数的本质。
2.示例法:通过具体的例子,让学生学会如何绘制反比例函数的图像,并运用反比例函数解决实际问题。
3.讨论法:学生进行小组讨论,让学生在讨论中掌握反比例函数的知识,提高学生的合作能力。
六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的概念、性质、图像等方面的内容。
2.练习题:准备一些关于反比例函数的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解反比例函数的概念,引导学生理解反比例函数的本质。
通过具体的例子,让学生学会如何绘制反比例函数的图像。
3.操练(10分钟)让学生独立完成一些关于反比例函数的练习题,巩固所学知识。
相关资料反比例函数第一课时 反比例函数的意义一、教学目标1. 使学生理解并掌握反比例函数的概念2. 能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3. 能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1. 重点:理解反比例函数的概念,能根据已知条件写出函数解析式2. 难点:理解反比例函数的概念3. 难点的突破方法:(1) 在引入反比例函数的概念时,可适当复习一下第 11 章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解k(2) 注意引导学生对反比例函数概念的理解,看形式 y =,等号左边是函数 y ,等x号右边是一个分式,自变量 x 在分母上,且 x 的指数是 1,分子是不为 0 的常数 k ;看自变量 x 的取值范围,由于 x 在分母上,故取 x ≠0 的一切实数;看函数 y 的取值范围,因为 k ≠ 0,且 x ≠0,所以函数值 y 也不可能为 0。
讲解时可对照正比例函数 y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)y = k(k ≠0)还可以写成 y = kx -1 (k ≠0)或 xy =k (k ≠0)的形式x三、例题的意图分析教材第 46 页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第 47 页的例 1 是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例 1、例 2 都是常见的题型,能帮助学生更好地理解反比例函数的概念。
补充例 3 是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。
本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。
通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。
但是,对于反比例函数这一抽象的概念,学生可能难以理解。
因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。
2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,让学生运用反比例函数解决。
3.教学设备:投影仪、计算机、黑板等。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。
沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要介绍了反比例函数的定义、性质及图象。
通过本节课的学习,使学生能够理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了函数的概念、一次函数和二次函数的知识,具备了一定的函数基础。
但反比例函数的概念和性质相对较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生通过实例感受反比例函数的特点,培养学生的抽象思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察实例,引导学生发现反比例函数的规律,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生学习反比例函数的兴趣,培养学生积极探究的精神。
四. 教学重难点1.反比例函数的概念及其性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过观察实例,引导学生发现反比例函数的规律。
2.启发式教学法:在教学过程中,引导学生积极思考,培养学生的抽象思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,共同探究反比例函数的知识。
六. 教学准备1.教学课件:制作反比例函数的教学课件,包括实例、图象等。
2.教学素材:准备一些与反比例函数相关的实例,如广告单、报纸等。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用实例引入反比例函数的概念,如广告单上的优惠券、报纸上的广告等。
引导学生观察实例中的数量关系,提出问题:“这些实例中是否存在某种数量关系?它们之间有什么联系?”2.呈现(15分钟)呈现反比例函数的定义和性质,通过讲解和示范,使学生理解反比例函数的概念。
同时,展示反比例函数的图象,让学生观察图象的特点。
3.操练(15分钟)让学生分组讨论,分析实例中的数量关系,找出反比例函数的规律。
沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
教材通过生活中的实例引入反比例函数的概念,接着引导学生探究反比例函数的性质,最后通过例题和练习题巩固所学知识。
二. 学情分析九年级的学生已经学习了函数的基本概念和性质,具备了一定的函数知识基础。
但反比例函数的概念和性质与正比例函数有所不同,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过观察、分析和归纳来发现反比例函数的性质,并能够运用这些性质解决实际问题。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的概念。
2.掌握反比例函数的性质,能够运用反比例函数解决实际问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.反比例函数的定义和性质的理解。
2.运用反比例函数解决实际问题的方法的掌握。
五. 教学方法1.情境教学法:通过生活中的实例引入反比例函数的概念,让学生感受到反比例函数的实际意义。
2.引导发现法:引导学生观察、分析和归纳反比例函数的性质,培养学生的发现能力和思维能力。
3.例题教学法:通过典型例题的讲解,让学生掌握反比例函数的应用方法。
4.练习法:通过练习题的训练,巩固所学知识,提高学生的解题能力。
六. 教学准备1.教学课件:制作反比例函数的课件,展示反比例函数的性质和应用。
2.练习题:准备一些有关反比例函数的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实例,如广告牌的高度与距离地面的高度之间的关系,引入反比例函数的概念。
引导学生观察和思考,引出反比例函数的定义。
2.呈现(10分钟)展示反比例函数的性质,引导学生通过观察、分析和归纳来发现反比例函数的性质。
沪科版数学九年级上册21.5.1反比例函数教学设计上述几个函数都具有 的形式,一般地,形如y=k/x(k 是常数,k ≠0)的函数叫反比例函数。
1、反比例函数y=k/x,自变量x 的取值范围是不等于0的一切实数,函数y 的值也不等于0。
k 叫做比例系数,k ≠0。
2、有时反比例函数也可写成xy=k(k ≠0)或 y=k/x(k ≠0). 练习1.下列函数中,哪些是反比例函数(x 是自变量)?并说出反比例函数的比例系数。
2. 如果反比例函数y=k/x 的图像过点P(-2,3),那么k 的值是( )用待定系数法求反比例函数解析式的一般步骤: ①设出含有待定系数的反比例函数解析式, ②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数; ④写出反比例函数解析式.例1.在压力不变的情况下,某物体承受的压强 p Pa 是它的受力面积S m 2的反比例函数,如图(1)求p 与S 之间的函数表达式;(2)当S=0.5时,求p 的值.变式:已知y =(m 2+2m)x m2+m -1是y 关于x 的反比例函数,求m 的值及函数关系式变式1、已知函数熟记反比例函数的定义,理解概念梳理知识点,理解概念。
注意反比例函数图像的步骤k y x=(2)(1)k k y x-+=是反比例函数,则k 必须满足___。
变式3、已知函数y=2y1-y2,y1与x+1成正比例,y2与x成反比例,当x=1时,y=4,当x=2时,y=3,求y与x的函数关系式。
中考链接若函数是反比例函数,求k的值,并写出该反比例函数的解析式. 学生要独立完成练习,然后进行展示,其他学生相互补充。
通过例题的学习,由易到难,加深对知识点的理解和掌握.作业必做题: 随堂练习P44选做题: 习题21.5第1、2、3题独立完成学生独立完成例题变式,养成独立完成作业的习惯课堂小结反比例函数:定义/三种表达方式用待定系数法求反比例函数解析式学生独自总结回顾课堂知识,强化基础。
23.6反比例函数-图象和性质(第1课时)一、创设情境 引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:教师提出问题。
学生思考、交流,回答问题。
教师根据学生活动情况进行补充和完善。
二、类比联想 探究交流活动2问题:例2 画出反比例函数y=x 6与y=-x 6的图象。
(教师先引导学生思考,示范画出反比例函数y=x 6的图象,再让学生尝试画出反比例函数y=-x 6的图象。
)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:○1学生能否顺利进行三种表示方法的相互转换:○2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;○3在动手作图的过程中,能否勤于动手,乐于探索。
比较y=x 6、y=-x 6的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。
)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。
在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较 发现规律活动3问题:观察反比例函数y=x 6与y=-x 6的图象。
你能发现它们的共同特征以及不同点吗?每个函数的图象分别位于哪几个象限?在每一个象限内,y 随x 的变化如何变化?由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y=x k的性质:形状: 反比例函数的图象是由两支双曲线组成的.因此称反比例函数的图象为双曲线;位置: 当k>0时,两支双曲线分别位于第一,三象限内,在每个象限内y 随x 增大而减小;当k<0时,两支双曲线分别位于第二,四象限内,在每个象限内y 随x 增大而增大;任意一组变量的乘积是一个定值,即xy=k.(注意:双曲线的两个分支都不会与x 轴,y 轴相交。
21.5反比例函数第1课时反比例函数教学目标【知识与技能】1.理解反比例函数的概念,能判断一个给定的函数是否为反比例函数.2.能根据实际问题中的条件确定反比例函数的表达式,体会函数的模型思想.【过程与方法】从现实情境和已有知识经验出发,经历抽象反比例函数的过程,让学生建立初步的符号感,发展学生的抽象思维能力.【情感、态度与价值观】通过创设情境让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.重点难点【重点】反比例函数的概念和应用.【难点】理解反比例函数的含义.教学过程一、复习回顾师:什么是正比例函数?它的两个变量之间有什么关系呢?学生回答.教师多媒体课件出示:1.下列函数中,哪些是正比例函数?(1)y=3x-1;(2)y=x2;(3)y=3x;(4)y=-;(5)y=;(6)x=;(7);(8)y=.学生回答.教师多媒体课件出示:2.观察下列函数,它们有什么特点?(1)-y=-;(2)y=;(3)y=;(4)y=.生:……师:我们知道正比例函数都可以写成y=kx的形式,这些函数呢?它们都可以写成哪种形式?生:写成y=(k为常数,且k≠0)的形式.二、共同探究,获取新知1.给出定义.师:我们把这个等式进行变形,两边同乘以x,就变为xy=k,因为k为常数,所以x和y的乘积是一定的,这就是我们小学学过的反比例关系.教师板书:一般地,函数y=(k为常数,且k≠0)叫做反比例函数.教师多媒体课件出示:(1)下列选项中,两个变量之间的关系为反比例关系的是()A.匀速行驶的过程中,行驶的路与时间的关系B.体积一定,物体的质量与密度的关系C.质量一定,物体的体积与密度的关系D.长方形的长一定,它的周长与宽的关系(2)京沪高速公路全长约为1 262 km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需要的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的反比例函数吗?(3)三角形的面积为6,它的底y与底边上的高x之间的函数关系式为.教师找三生回答.2.例题讲解.【例1】已知参加施工的人数y与完成某项工程的时间x天成反比例关系.当施工人数为4时,10天能完成这项工程.现要求8天完成这项工程,应选派多少人去施工?师:你知道这种问题应该怎么解决吗?生:知道,用待定系数法.师:具体的思路是什么呢?生:先求出y与x之间的函数关系式,然后把天数代入,求出人数.师:这里哪两个量是成反比例的?生:人数y与时间x天.师:那么我们可以怎样它们之间的关系?生:设y=.师:然后怎么做呢?教师找一生回答.生:当x=10时,y=4,代入上式,得k=40,即y=.将x=8代入上式,得y==5.师:你回答得太好了!因此,当要求8天完成这项工程时,应选派5个人去施工.【例2】在压力不变的情况下,某物体承受的压强pPa是它的受力面积Sm2的反比例函数,如图.(1)求p与S之间的函数表达式;(2)当S=0.5时,求物体承受的压强p的值.解:(1)根据题意,设p=.函数图象经过点(0.1,1 000),代入上式,得1 000=.解方程,得k=100.答:p与S之间的函数表达式为p=(p>0,S>0).(2)当S=0.5时,p==200.答:当S=0.5时,物体承受的压强p的值为200.三、练习新知,加深理解教师找两生板演教材第44页练习的第2题,其余同学在下面做,然后集体订正,得到:解:(1)设ρ=,把V=10,ρ=1.43代入这个式子得到k=14.3,所以ρ与V之间的函数关系式为:ρ=;(2)把V=2代入上式,得ρ==7.15.所以当V=2 m3时,氧气的密度ρ为7.15 kg/m3.教师多媒体课件出示:1.某村有耕地200 hm2,人口数量x逐年发生变化,该村人均耕地面积y hm2与人口数量x之间有怎样的关系?2.某市距省城248 km,汽车由该市驶往省城,汽车行驶全程所需的时间t h与行驶的平均速度v km/h之间有怎样的关系?3.当电压U一定时,通过电阻的电流I与电阻的阻值R之间有怎样的关系?师:请同学们看这几个问题,你能得到题中两个量之间的关系吗?学生读题,思考.教师找三生回答,然后集体订正得到:1.y=;2.t=;3.I=.教师多媒体课件出示:为建设社会主义新农村,某地方政府准备修建一条连接各村庄的水泥路.修路时需要运输的土石方总量为1.2×108 m3,某运输承接了这项运输土石方的任务.(1)请写出运输公司平均每天的工作量y(m3/天)与完成运输任务所需的时间t(天)之间的函数关系式;(2)这个运输公司共有100辆汽车,每天一共运送土石方6×105 m3,那么该公司完成全部运输任务需要多长时间?教师找两生板演,其余同学在下面做,然后集体订正.四、课堂小结师:通过本节课的学习,你有什么收获?学生回答.教学反思在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性.通过让学生回忆正比例函数,然后引出与它相反的反比例函数,用它们的对比吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥.由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动.这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈.在课程设计中,将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的.由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的.第2课时反比例函数的图象与性质教学目标【知识与技能】1.知道反比例函数的图象是双曲线,利用描点法画反比例函数的图象,说出它的性质.2.能利用反比例函数的图象和性质解决有关问题.【过程与方法】1.经历对反比例函数图象的观察、分析、讨论、概括过程,总结出它的性质.2.探索反比例函数的图象的性质,体会并掌握用数形结合思想解决数学问题的方法.【情感、态度与价值观】调动学生的主观能动性,积极参与数学活动,培养合作、交流意识,提高观察、分析、抽象的能力.重点难点【重点】反比例函数的图象和性质.【难点】反比例函数图象的画法及其性质的归纳.教学过程一、回顾交流,问题牵引教师多媒体课件出示:1.什么叫做反比例函数?下列函数中哪些是反比例函数?y=,y=-,y=6x+,y=-4x+1.反比例函数的定义中需要注意什么?2.一次函数y=kx+b(k≠0)的图象是一条直线,那么反比例函数的图象是什么样的呢?3.画函数图象的一般步骤是什么?师:请同学们回答以上问题.学生抢答.二、师生互动,探求新知师:下面我们来画一个反比例函数y=的图象.它的取值范围是什么呢?生:x≠0.师:对,所以我们取x的值时,应取不等于0的数.请同学们根据作图的一般步骤作出这个函数的图象.学生作图,教师巡回指导.师:你能说出这个图象的特征吗?生甲:它的图象在一、三象限.生乙:在每个象限内,函数值y随x值的增大而减小.师:图象与坐标轴有交点吗?学生观察后回答,图象的两个分支都无限接近x轴和y轴,但永远不与它们相交.师:你能根据它的表达式分析一下出现这种现象的原因吗?学生交流、讨论.师:一条线若与x轴相交,交点的纵坐标为多少?生:为0.师:若与y轴相交,交点的横坐标呢?生:为0.师:那表达式的图象不会与x轴和y轴相交,说明了什么?生:x和y都不能为0.师:你们太聪明了!你能说说为什么x和y都不能为0吗?学生讨论.生:因为y=变形后是xy=6,若x、y中有一个为0,则它们的积就是0了.师:对,你分析得太好了!这个图形的形状有什么特点呢?生:……师:如果点P(x0,y0)在函数y=的图象上,那么,与点P关于原点成中心对称的P'的坐标应是什么?生:(-x0,-y0).师:这个点在函数y=的图象上吗?学生思考后回答:在.师:为什么?生:因为当(x0,y0)在这个图象上时,有y0=,即x0y0=6,所以(-x0)(-y0)=6,-y0=,所以(-x0,-y0)也在y=的图象上.因此,你能得到什么结论?生:y=的图象关于原点成中心对称.师:现在请同学们在同一平面坐标系中画出反比例函数y=-与y=的图象,然后观察这两个图象,看它们之间有什么关系?学生作图.师:观察函数y=-和y=的图象,你能发现它们的共同特征以及不同点吗?每个图象的象限分别位于哪几个象限?在每个象限内,y随x的变化如何变化?学生观察图象后回答.师:请同学们在课本第46页图21-29中画出函数y=-的图象.学生作图.三、归纳与概括师:观察并比较函数y=与y=-的图象,你能分别就k>0和k<0两种情况总结反比例函数y=(k 为常数,且k≠0)的性质吗?师生一起总结出:反比例函数y=(k为常数,且k≠0)的性质吗?师生一起总结出:反比例函数y=(k为常数,且k≠0)有下列性质:(1)当k>0时,两支曲线分别位于第一、三象限,在每个象限内,y随x的增大而减小;(2)当k<0时,两支曲线分别位于第二、四象限,在每个象限内,y随x的增大而增大.师:同学们都总结得不错!下面让就我们一起用刚才总结出来的规律来解决几个问题.教师读题,学生在下面思考.1.已知点M(-2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,-2)B.(-2,-3)C.(2,3)D.(3,2)【答案】A2.若A(a1,b1),B(a2,b2)是反比例函数y=图象上的两个点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1=b2C.b1>b2D.不能确定【答案】D3.已知A是反比例函数y=上的一点,自点A向y轴作垂线,垂足为T.若S△AOT=3,则此函数的关系式为.【答案】y=±4.直线y=x与反比例函数y=的图象交于A、B两点,过点A作AC垂直于y轴,垂足为C,则△ABC 的面积为.【答案】45.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小.(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC的面积为6,求k的值.【答案】(1)∵在图象的每条曲线上,y随x的增大而减小,∴k>0;(2)设A(x0,y0),则由已知应有|x0y0|=6,即|k|=6,又∵k>0,∴k=6.四、应用所学,解决问题【例】已知反比例函数y=.(1)如果这个函数的图象经过点(-3,5),求k的值;(2)如果这个函数的图象在它所处的象限内,函数y随x的增大而减小,求k的取值范围.解:(1)因为函数的图象经过点(-3,5),代入函数的表达式,得5=.解方程,得k=-7.(2)根据题意,有2k-1>0.解不等式,得k>.师:下面我们通过进一步的练习巩固反比例函数的性质:1.在某一电路中,保持电压U不变,电流I(安培)与电阻R(欧姆)之间的关系是:U=IR,当电阻R=5欧姆时,电流I=2安培,则电流I(安培)是电阻R(欧姆)的函数,且I与R之间的函数关系式是.师:请大家交流后回答.生:电流I(安培)是电阻R(欧姆)的反比例函数,关系式为I=.师:回答正确,很好!下面请大家再思考一个问题:2.已知△ABC的面积为12,则△ABC的高h与它的底边a的函数关系式为.生:h=.师:回答正确,同学们掌握得都很好!继续思考下面的问题:3.如果反比例函数y=的图象位于第二、四象限,那么m的取值范围为.生:由1-3m<0,得-3m<-1,∴m>.4.已知点A(-2,y1),B(-1,y2)都在反比例函数y=(k<0)的图象上,则y1与y2的大小关系(从大到小)为.生:y2>y1.师:好!通过上面几道题的练习,同学们已经基本掌握了反比例函数的性质,那么我们更上一层楼,思考下面几道题:1.若点P是反比例函数y=的图象上的一点,PD⊥x轴于D,则△POD的面积为.2.三个反比例函数在x轴上方的图象,y1=,y2=,y3=.由此得到()A.k1>k2>k3B.k3>k2>k1C.k2>k1>k3D.k3>k1>k2师:大家可以独立完成此题,如有困难再进行交流.学生交流、讨论.师:请同学们举手回答.生:第1题答案为1.师:请你解释一下.生:因为反比例函数的表达式又可以写成xy=k,即图象上的点的横、纵坐标的积就是k的值,由题意得xy=2.又xy=S△POD,∴S△POD=1.师:回答正确!哪位同学业来回答第2题?生:由反比例函数的性质可知,k2>k1,又k3>k2,所以k3>k2>k1,答案为B.师:很好!通过这节课的学习,同学们已经基本掌握了反比例函数的性质,那么下面同学们能不能自己出两个有关反比例函数的问题?写出函数表达式,与同伴进行交流.师生互动,交流.五、课堂小结师生总结回顾本节课所学的内容.反比例函数的图象和性质:形状:反比例函数的图象称为双曲线;位置:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内;增减性:当k>0时,在每一象限内,y随x的增大而增大.图象的发展趋势:反比例函数的图象无限接近于x、y轴,但永远不能到达x、y轴.对称性:反比例函数y=的图象关于坐标原点对称.教学反思本节课通过学生自主探索,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成.在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能引起学生的注意力,有效地节省了时间,增大了课堂容量.生动形象的动画演示,动感强,直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比、数形结合的数学思想方法.。
第21章二次函数与反比例函数
21.5反比例函数
第1课时反比例函数的概念
课题第1课时反比例函数的概念授课人
教学目标知识技能
通过对实际问题的分析,让学生感受反比例函数是刻画现实世界的有效模型,理解、掌握反比例函数的意义和反比例函数的一般形式.数学思考学会建立反比例函数解决问题的方法.
问题解决通过探索反比例函数的过程,提高分析问题、解决问题的能力.情感态度
经历反比例函数的形成过程,使学生体验函数是描述变量间对应关系的重要数学模型.
教学
重点
掌握反比例函数的意义和反比例函数的一般形式.
教学
难点
通过探索反比例函数的过程,提高分析问题、解决问题的能力.
授课
类型
新授课课时
教具多媒体
教学活动
教学
步骤
师生活动设计意图
活动一:创设情景导入新课
【课堂引入】
1.体育课上,同学们跑800米时,每位同学跑步的平
均速度v(单位:米/分)随着此同学跑完全程的时间t(单位:
分)的变化而变化,用含t的式子表示v.
2.一次数学课上,老师要求同学们画一个面积为10平方
厘米的矩形,同学们画后发现矩形的一边长y(单位:厘米)
随着相邻边长x(单位:厘米)的变化而变化,用含x的式子
表示y. 3.已知北京市的总面积为16800平方千米,人均占
有土地面积S(单位:平方千米/人)随着全市总人口n(单位:
人)的变化而变化,用含n的式子表示S. 根据上述三个问
题回答:
1.你能说出它们的共同特征吗?你能用一个一般形式表示
出来吗?
2.它们是一次函数吗?是二次函数吗?
通过创设问题情境,使学
生感受到数学来源于生
活,激发学生参与课堂学
习的热情,为学习反比例
函数的概念埋下伏笔.
(续表)
活动一:创设情景导入新课
3.根据这些函数反映的数量关系,你觉得这些函
数应当叫做什么函数?
活动目的:给学生设置疑问,激发学生的学习兴趣.
(1)通过以上问题,引出反比例函数的概念:
一般地,表达式形如y=
k
x(k为常数,且k≠0)的函数
叫做反比例函数.
(2)反比例函数中自变量的取值范围是x≠0的实数.
(3)如果已知两个变量成反比例关系,就可以用待定系
数法设这个函数的表达式为y=
k
x(k为常数,k≠0),只
要求出k的值,就求出了两个变量之间的关系.
在情境导入的基础上,提
出这些问题,一是引起学生的
进一步思考;二是引出课题;
三是顺理成章地进入反比例
函数概念的探究.
活动二:实践探究交流新知
探究一:反比例函数的定义
在引入的基础之上,给学生再举几例,如:
问题1:小明有15元钱,购买单价是x元的铅笔y支,
你能用含x的代数式表示y吗?
问题2:一个矩形的面积为20 cm2,相邻的两条边长
分别为x cm,y cm.那么变量y是变量x的函数吗?是
反比例函数吗?为什么?
问题3:一个物体重100 N,物体对地面的压强p(N/m2)
与物体跟地面的接触面积S(m2)的关系是什么?p是S
的反比例函数吗?为什么?
(1)通过以上问题,归纳反比例函数的概念:
一般地,表达式形如y=
k
x(k为常数,且k≠0)的函数
叫做反比例函数.
(2)反比例函数中自变量的取值范围是x≠0的实数.
(3)如果已知两个变量成反比例关系,就可以用待定系
数法设这个函数的表达式为y=
k
x(k为常数,k≠0),只
要求出k的值,就求出了两个变量之间的关系.
探究二:用待定系数法求反比例函数的表达式
问题:已知y是x的反比例函数,当x=2时,y=6.
(1)写出y与x之间的函数表达式;(2)求当x=4时y
的值.
分析:在做题之前,先回忆一下如何求正比例函数和
一次函数的表达式(待定系数法).
在正比例函数y=kx中,确定表达式的关键是求得非
零常数k的值,因此需要一个条件即可;在一次函数
y=kx+b中,要确定表达式实际上是求k和b的值,
有两个待定系数,因此需要两个条件.同理,在求反
通过这个探究,巩固了学
生对反比例函数的概念和一
般形式的掌握.
用待定系数法求函数表达式
是贯穿函数这一部分的重要
方法.用待定系数法求反比例
函数的表达式,既巩固了这种
方法,又加深了学生对反比例
函数一般式的理解与掌握.
比例函数的表达式时,实际上是要确定k 的值,因此只需要一个条件即可,也就是要有一组x 与y 的值来确定k 的值.
(详细板书)解:(1)设反比例函数的表达式为y =k x
(k ≠0),
因为当x =2时y =6,所以有6=k
2,
解得k =12,因此y =12x
. (2)把x =4代入y =
12x ,得y =124
=3.
(续表)
活动三:开放训练体现应用【应用举例】
例(教材P43问题1、2、3)
变式一:关系式y=
240
x可以表示的实际意义为
________.
变式二:举出生活中两个变量具有反比例关系的实例
(1~2个).
讲解策略:在讲完教材例题后,用多媒体投影此题,
先仿例题提出菱形的面积问题,进而再推广到其他问
题.各小组比较,来个竞赛,看哪一个小组写得既多
又合理.
通过变式发散学生的思维,探
究现实生活中的反比例关系,
体会反比例函数的广泛应用.
【拓展应用】
1.反比例函数概念的应用
例1若y=(5+m)x2+n是反比例函数,则m,n的值
分别满足()
A.m=-5,n=-3B.m≠-5,n=-
3
C.m≠-5,n=3 D.m≠-5,n=-4
2.反比例函数的简单建模的应用
例2小明家离学校1.5 km,小明步行上学需x min,
那么小明步行的速度y(m/min)可以表示为y=
1500
x;水
平地面上重1500 N的物体,与地面的接触面积为x m2,
那么该物体对地面的压强y(N/m2)可以表示为y=
1500
x;…,函数表达式y=
1500
x还可以表示许多不同
情境中变量之间的关系,请你再列举一例:________.
1.通过例1,让学生对反比
例函数的表达式的特征有更
进一步的理解与掌握.
2.通过例2,让学生体会到
反比例函数模型是现实生活
中一个常见的模型.
活动四:课堂总结反思【达标测评】
1.下列函数中,哪些是反比例函数?若是,指出其中
k的值.
(1)y=
x
3;(2)5xy=1;(3)y=
1
x;(4)y=4x+2;
(5)y=
k2+2
x.
2.马兰一中到台儿庄古城的路程为15千米,小明骑
车所用的时间t(单位:时)与速度(平均速度)v(单位:千
米/时)之间的函数表达式是()
A.t=15v B.t=v+15
C.t=
15
v D.t=
v
15
通过设置达标测评,进一
步巩固所学新知,同时检测学
习效果,做到“堂堂清”.
3.若y=m-1
x是反比例函数,则m的取值范围是________.
4.若y=m(m+2)
x是反比例函数,则m的取值范围
是________.
(续表)
活动四:课堂总结反思【课堂总结】
1.课堂总结:
(1)谈一谈你在本节课中有哪些收获,有哪些进步.
(2)学完本节课后,你还存在哪些困惑?
2.布置作业:教材P44的练习.
小结环节的设置
能够让学生养成自主
归纳课堂重点的习
惯,提高学生的学习
能力.
【知识网络】
框架图式总结,更
容易形成知识网络.
【教学反思】
①[授课流程反思]
在情境导入环节中,对两个实际问题进行分析研究,并写出它
们的函数表达式,为导入反比例函数做好铺垫.本节课的主要
任务是通过设计问题,经历抽象反比例函数概念的过程,由形
成概念到理解概念再到应用概念.
②[讲授效果反思]
对于反比例函数的概念,强调确定了反比例函数表达式中的系
数k,就确定了两个变量之间的反比例关系.
③[师生互动反思]
从课堂氛围和课堂效果分析,学生能够积极地投入到新知学习
中,学生能够集中精力完成学习任务.
④[练习反思]
好题题号__________________________________________
错题题号__________________________________________
反思教学过程和教
师表现,进一步提升
操作流程和自身素
质.。