(初二数学第十三周周测试题不含答案)最短路径问题
- 格式:doc
- 大小:527.00 KB
- 文档页数:2
初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。
该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。
对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。
本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。
练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。
要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。
解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。
将A、B、C、D顶点分别标记为1、2、3、4。
村庄A到村庄B的距离为5,即A-5-B。
村庄A到村庄C的距离为3,即A-3-C。
村庄B到村庄C的距离为2,即B-2-C。
村庄B到村庄D的距离为6,即B-6-D。
村庄C到村庄D的距离为4,即C-4-D。
2. 接下来,我们使用迪杰斯特拉算法求解最短路径。
a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。
b) 然后,我们选择距离最短的顶点,并将其标记为已访问。
c) 然后,我们更新与该顶点相邻的顶点的距离。
如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。
d) 重复上述步骤,直到找到最短路径为止。
3. 经过计算,最短路径为A-3-C-4-D,距离为7。
练习题二:某城市有6个地点,它们之间的交通图如下所示。
请你计算从地点A到地点F的最短路径,并给出最短路径的长度。
解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。
将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。
地点A到地点B的距离为4,即A-4-B。
八年级数学最短路径问题一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。
三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。
练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?提高训练一、题中出现一个动点。
1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.例:如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。
二、题中出现两个动点。
当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。
例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求C、D的坐标。
练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三、题中出现三个动点时。
第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
人教版八年级上册数学13.4 课题学习最短路径问题专项训练一.选择题1. 如图,在△ABC中,AB=AC,BC=8,面积是20,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.8 B.9 C.10 D.122. 如图,∠AOB=50°,点P为∠AOB内一点,点M、N分别在OA、OB上,当△PMN的周长最小时,∠MPN 的度数是()A.50°B.65°C.80°D.130°3. 如图,在△ABC中,AC=BC=10,∠ACB=4∠A,BD平分∠ABC交AC于点D,点E,F分别是线段BD,BC上的动点,则CE+EF的最小值是()A.2 B.4 C.5 D.64. 如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2 B.4 C.6 D.85. 如图,在平面直角坐标系中,点A(5,2),点B(0,3),点P是x轴上一个动点,且点A,B,P不在同一条直线上,当△ABP的周长最小时,点P的坐标为()A.(2,0)B.(2.5,0)C.(3,0)D.(1.5,0)6. 如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是()A.α﹣β=2x B.2β+α=90°+2x C.β+α=90°+x D.β+2α=180°﹣2x7. 在Rt△ABC中,∠C=90°,∠A=30°,点P是边AC上一定点,此时分别在边AB,BC上存在点M,N使得△PMN周长最小且为等腰三角形,则此时的值为()A.B.1 C.D.28. 如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是()A.6 B.7 C.8 D.99. 如图,在学习了轴对称后,琪琪在课外研究三角板时发现“两块完全相同的含有30°的三角板可以拼成一个等边三角形”,请你帮他解决以下问题:在直角△ABC中,∠ACB=90°,∠A=30°,AC=6,BC=,点E,P分别在斜边AB和直角边AC上,则EP+BP的最小值是()A.B.4 C.6 D.10.如图,点A,B在直线l的同侧,在直线l上找一点P,使PA+PB最小,则下列图形正确的是()A. B. C. D.二.填空题11. 如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1),若P是y 轴上的动点,则PA+PC的最小值为.12. 如图,在△ABC中,∠ABC=90°,AB=12,BC=5,AC=13,点M、N分别是AB、AC上的动点,连接CM、MN,则CM+MN的最小值为.13. 如图,在△ABC中,∠B=60°,BC=12.点M在BC边上,且MC=BC,射线CD⊥BC于点C,点P 是射线CD上一动点,点N是线段AB上一动点.(Ⅰ)线段MP+NP是否存在最小值?(用“是”或“否”填空)(Ⅱ)如果线段MP+NP存在最小值,请直接写出BN的长;如果不存在,请说明理由.14. 如图所示,在平面直角坐标系中A(﹣2,4),B(﹣4,2).在y轴找一点P,使得△ABP的周长最小,则△ABP周长最小值为.15. 如图,海上救援船要从A处到海岸l上的M处携带救援设备,再回到海上C处对故障船实施救援,使得行驶的总路程AM+CM为最小.已知救援船和故障船到海岸l的最短路径分别为AB和CD,BD=20海里,∠AMB=60°,救援船的平均速度是25节(1节=1海里/小时),则这艘救援船从A处最快到达故障船所在C处的时间为小时.三.解答题16. 如图,在平面直角坐标系中,点C的坐标为(﹣1,5).(1)若把△ABC向右平移5个单位,再向下平移3个单位得到△A1B1C1,并写出B1的坐标;(2)在x轴上找一点P,使得PA+PB的值最小,并求最小值.17. 如图,直线a∥b,点A,点D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=12cm,AE:BE=1:2,P为射线AB上一动点,P从A点开始沿射线AB方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m为何值时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.18. 如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:CE=BE.(2)若AB=15cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.19. 如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=65°,则∠NMA的度数是度.(2)若AB=10cm,△MBC的周长是18cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.20.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.。
八下数学最短路径问题典型题好嘞,今天我们聊聊八下数学里的最短路径问题。
听起来有点高大上,但其实就是想在迷宫里找到最快的路。
想象一下,你在一个热闹的游乐园里,周围都是五彩斑斓的游乐设施。
你想去坐过山车,但不知道该走哪条路。
这个时候,最短路径问题就像是你的游乐园导航,让你快速找到目的地,省时又省力,真是个好帮手。
最短路径问题啊,简单来说,就是在一堆点和线中,找到从一个点到另一个点的最短路线。
比如说你在学校,老师让你去图书馆借书。
你知道从教室到图书馆的路,但你得想想,走哪个小道能更快到达。
这里面就涉及到一个数学概念,叫做“权重”。
每条路的长度就像是给每个小道打了分,越短的路,分数越低,明白吧?这就像你在买东西,看到打折的信息,总想着哪个更便宜,哪个更划算。
再说说实际应用。
咱们的生活中到处都有最短路径的问题。
想象一下,你周末想和朋友约着去吃火锅,结果发现从家里到火锅店的路上堵车,那可是让人心急如焚。
你就得琢磨琢磨,换条路走,甚至还得看看哪个路口有新开的餐厅。
这个时候,最短路径的问题就变得尤为重要。
怎么解决这个问题呢?有几种方法,其中一种叫“Dijkstra算法”。
别听名字复杂,其实就是个聪明的家伙,能帮助你一步一步找到最短路径。
你可以把它想象成一个耐心的导游,带着你从起点出发,看到每一个可以选择的方向,挑最短的走。
一路上还会给你提示,“嘿,这条路不错,快来试试!”可爱得不行。
还有一种叫“FloydWarshall算法”,听起来是不是更厉害?这家伙更全能,可以同时计算出多个点之间的最短路径。
就像你跟朋友一起出去吃饭,大家都想找离餐厅最近的路。
这个算法就像是个超级GPS,能一口气帮你们规划好所有的路线。
可以说,FloydWarshall算法简直是个“多面手”,在复杂的网络中游刃有余。
不过,最短路径问题可不是只有数学家才能玩哦,咱们生活中其实也常常在用。
比如说,当你在手机上查地图的时候,系统就会运用这些算法来帮你找到最快的路线。
初中数学《八上》第十三章轴对称《课题学习》最短路径问题考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、如图,在△ABC中,AB 的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4 ,EC=2 ,则BC的长是()A . 2B . 4C . 6D . 8知识点:课题学习最短路径问题【答案】C【分析】根据线段的垂直平分线的性质得到EB=EA=4 ,结合图形计算,得到答案.【详解】解:∵DE是AB的垂直平分线,AE=4 ,∴EB=EA=4 ,∴BC=EB+EC=4 + 2 = 6 ,故选:C.【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.2、如图,在△ABC中,按以下步骤作图:① 分别以点A和点C为圆心,以大于的长为半径作对弧,两弧相交于M、N两点;② 作直线MN交BC于点D,交AC于E,连接AD,若AD=BD,AB=8 ,则DE=___ .知识点:课题学习最短路径问题【答案】4【分析】根据作图即可得到是的垂直平分线,再根据,得到DE是△ABC的中位线,即可得到DE的长.【详解】解:根据作图即可得到是的垂直平分线∴,∴,∵∴∴为的中点∴DE是△ABC的中位线∴故答案为【点睛】本题主要考查了基本作图以及线段垂直平分线的性质,利用三角形中位线定理是解决问题的关键.3、如图,在△ABC 中, AB = AC , AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∠ABC, 则∠A =________________ ° .知识点:课题学习最短路径问题【答案】36 .【详解】试题分析:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x +x +x +2x=180° ,解得:x=36° ,故答案为36 .点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案.4、在菱形ABCD中,E、F分别是BC和CD的中点,且AE ⊥BC,AF ⊥CD,那么∠EAF等于()A .45°B .55°C .60°D .75°知识点:课题学习最短路径问题【答案】C【分析】连接AC,根据题意证得是等边三角形,再由等边三角形的性质求出∠EAC的度数,同理可求得∠FAC的度数,进而得到答案.【详解】解:如图,连接AC,∵E是BC中点,且AE ⊥BC,∴AE垂直平分BC,∴AB =AC,又∵ 四边形ABCD是菱形,∴AB =BC,∴AB =BC =AC,∴是等边三角形,∴∠BAC =60° ,AE平分∠BAC,∴∠EAC =30° ,同理可得,∠FAC =30° ,∴∠EAF =∠EAC +∠FAC =60° .故选:C .【点睛】本题考查了菱形的性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握各性质及判定定理是解题的关键.5、如图,在△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为13cm,则△ABC的周长为_____cm .知识点:课题学习最短路径问题【答案】21 .【分析】根据线段的垂直平分线的性质得到DA=DC 和 AC=2AE=8cm ,根据三角形的周长公式计算即可求解.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=8cm,∵△ABD的周长=AB +BD +DA=AB +BD +DC=AB +BC=13cm,∴△ABC的周长=AB +BC +AC=21cm,故答案为21 .【点睛】本题考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、到三角形的三个顶点距离相等的点是().A .三角形三条中线的交点B .三角形三边垂直平分线的交点C .三角形三条角平分线的交点D .三角形三条高的交点知识点:课题学习最短路径问题【答案】B【分析】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,三角形的三边是三条线段,从而可得答案.【详解】解:线段的垂直平分线上的点到线段的两个端点的距离相等,到三角形的三个顶点距离相等的点是三角形三边的垂直平分线的交点.故选:B【点睛】本题考查的是线段的垂直平分线的性质,三角形三边的垂直平分线的交点的性质,掌握“ 线段的垂直平分线的性质” 是解题的关键 .7、已知矩形ABCD中,对角线AC的垂直平分线交直线BC于点E,交直线AB于点F,若AB=4 ,BE=3 ,则BF长为___ .知识点:课题学习最短路径问题【答案】6 或【分析】AC的垂直平分线交直线BC于点E,交直线AB于点F可知点F的位置两种情况,一是点F在AB的延长线上,二是点F在AB上,然后分类用矩形的性质,线段垂直平分线的性质,全等三角形的判定与性质,相似三角形的判定与性质和勾股定理求解BF的长.【详解】解:① 当点F在AB的延长线上时,设BF =x,l∴△AOE ≌△AOH(ASA)∴AE =AH =5 ,又∵△FBE ∽△FAH,∴∴,解得:x =6 ,∴BF =6 ;② 当点F在AB的上时,设BF =y,如图2 所示:∵∠EFB =∠AFO,∠FBE =∠FOA,∴△EFB ∽△AFO,∴∠E =∠FAO,又∵△AFO +∠FAO =90° ,∠BCA +∠FAO =90° ,∴∠EFB =∠ACB,又∵∠EBF =∠ABC =90° ,∴△EBF ∽△ABC,∴,∴又∵AB =4 ,AB =AF +BF,∴AF =4-y,∵EH是AC的垂直平分线,∴AF =FC =4-y,在Rt △BFC中,由勾股定理得:BF2 +BC2 =FC2,∴,解得:或y =-6 (l 知识点:课题学习最短路径问题【答案】21 .【分析】根据线段的垂直平分线的性质得到DA=DC 和 AC=2AE=8cm ,根据三角形的周长公式计算即可求解.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=8cm,∵△ABD的周长=AB +BD +DA=AB +BD +DC=AB +BC=13cm,∴△ABC的周长=AB +BC +AC=21cm,故答案为21 .【点睛】本题考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、到三角形的三个顶点距离相等的点是().A .三角形三条中线的交点B .三角形三边垂直平分线的交点C .三角形三条角平分线的交点D .三角形三条高的交点知识点:课题学习最短路径问题【答案】B【分析】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,三角形的三边是三条线段,从而可得答案.【详解】解:线段的垂直平分线上的点到线段的两个端点的距离相等,到三角形的三个顶点距离相等的点是三角形三边的垂直平分线的交点.故选:B【点睛】本题考查的是线段的垂直平分线的性质,三角形三边的垂直平分线的交点的性质,掌握“ 线段的垂直平分线的性质” 是解题的关键 .10、如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则__________.知识点:课题学习最短路径问题【答案】【分析】由等腰三角形,“ 等边对等角” 求出,再由垂直平分线的性质得到,最后由三角形外角求解即可.【详解】解:,,垂直平分.故答案为:.【点睛】本题考查了等腰三角形性质,垂直平分线性质,三角形外角概念,能正确理解题意,找到所求的角与已知条件之间的关系是解题的关键.11、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B =60° ,∠C =25° ,则∠BAD =___________° .知识点:课题学习最短路径问题【答案】70 .【分析】根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.【详解】解:∵DE 是 AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25° ,∵∠B=60° ,∠C=25° ,∴∠BAC=95° ,∴∠BAD=∠BAC-∠DAC=70° ,故答案为70 .【点睛】本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、如图,在中,,.(1 )通过观察尺规作图的痕迹,可以发现直线是线段的__________ ,射线是的__________ ;(2 )在(1 )所作的图中,求的度数.知识点:课题学习最短路径问题【答案】(1 )垂直平分线,角平分线;(2 )25°【分析】(1 )根据图形结合垂直平分线、角平分线的作法即可得到答案;(2 )根据垂直平分线的性质及等腰三角形的性质即可得到,再结合三角形的内角和便能求得,,再根据角平分线的定义即可得到答案.【详解】解:(1 )由图可知:直线是线段的垂直平分线,射线是的角平分线,故答案为:垂直平分线,角平分线;(2 )∵是线段的垂直平分线,∴,∴,∵,,∴,∴.∵ 射线是的平分线,∴.【点睛】本题考查了垂直平分线、角平分线的作法以及它们的性质,等腰三角形的性质,三角形的内角和,熟练掌握垂直平分线、角平分线的性质是解决本题的关键.13、如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作点,使点到、的距离相等.(保留作图痕迹,不写作法)知识点:课题学习最短路径问题【答案】见解析【分析】作出线段AB 的垂直平分线即可.【详解】解:如图所示,点即为所求.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是熟练掌握基本作图.14、如图,在中,的垂直平分线交于点D,交于点,点F是的中点,连接、,若,则的周长为_________ .知识点:课题学习最短路径问题【答案】8【分析】根据垂直平分线的性质求得∠BEA的度数,然后根据勾股定理求出EC长度,即可求出的周长.【详解】解:∵DE是AB的垂直平分线,∴,BE =AE,∴,∵∴∴又∵AC =5 ,∴ 在中,,解得:CE =3 ,又∵ 点F是的中点,∴,∴的周长=CF +CE +FE =.故答案为:8 .【点睛】此题考查了勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质,解题的关键是熟练掌握勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质.15、《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点处立一根杆,在地面上沿着杆的影子的方向取一点,使两点间的距离为10 步(步是古代的一种长度单位),在点处立一根杆;日落时,在地面上沿着点处的杆的影子的方向取一点,使两点间的距离为10 步,在点处立一根杆.取的中点,那么直线表示的方向为东西方向.(1 )上述方法中,杆在地面上的影子所在直线及点的位置如图所示.使用直尺和圆规,在图中作的中点(保留作图痕迹);(2 )在如图中,确定了直线表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线表示的方向为南北方向,完成如下证明.证明:在中,______________ ,是的中点,(______________ )(填推理的依据).∵ 直线表示的方向为东西方向,∴ 直线表示的方向为南北方向.知识点:课题学习最短路径问题【答案】(1 )图见详解;(2 ),等腰三角形的三线合一【分析】(1 )分别以点A、C为圆心,大于AC长的一半为半径画弧,交于两点,然后连接这两点,与AC的交点即为所求点D;(2 )由题意及等腰三角形的性质可直接进行作答.【详解】解:(1 )如图所示:(2 )证明:在中,,是的中点,(等腰三角形的三线合一)(填推理的依据).∵ 直线表示的方向为东西方向,∴ 直线表示的方向为南北方向;故答案为,等腰三角形的三线合一.【点睛】本题主要考查垂直平分线的尺规作图及等腰三角形的性质,熟练掌握垂直平分线的尺规作图及等腰三角形的性质是解题的关键.16、如图,在中,,,的垂直平分线交与点,交于点,则的周长是__________.知识点:课题学习最短路径问题【答案】13【解析】根据线段的垂直平分线的性质和三角形的周长公式求解即可【详解】是的垂直平分线..的周长为:故答案:13.【点睛】本题考查了垂直平分线的性质和三角形的周长公式,熟练掌握垂直平分线的性质和三角形的周长公式是解题关键.17、如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°知识点:课题学习最短路径问题【答案】A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.18、如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A.20° B.30° C.45° D.60°知识点:课题学习最短路径问题【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.19、如图,在△ABC中,∠A=40º,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________.知识点:课题学习最短路径问题【答案】30°.【解析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°.20、如图,已知:在△ABC中,AD平分∠ BAC,AB=AD,CE⊥AD,交AD的延长线于E .求证:AB+AC=2AE .知识点:课题学习最短路径问题【答案】详见解析【分析】延长 AE到 M,使 ME=AE,连接 CM,求出 AC=CM,求出 DM=MC,即可得出答案.【详解】延长 AE到 M,使 ME=AE,连接 CM,则 AM=2AE,∵ CE ⊥ AE,∴ AC=CM,∴∠ M= ∠ CAD= ∠ DAB,∴ AB ∥ MC,∴∠ B= ∠ MCD,∵ AB=AD,∴∠ B= ∠ ADB,∵∠ ADB= ∠ MDC,∴∠ MCD= ∠ MDC,∴ MC=MD,∴ AM=2AE=AD+MD=AB+AC,即 AB+AC=2AE.【点睛】本题考查了平行线的性质和判定,线段垂直平分线性质,等腰三角形的性质和判定的应用,解此题的关键是推出 DE=EC,有一定的难度.。
13.4 最短路径问题同步习题一、选择题1.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C. D.2.如图,已知∠O ,点P 为其内一定点,分别在∠O 的两边上找点A 、B ,使△ PAB 周长最小的是()A. .B.C. D.3.如图,等边ΔABC的边长为8,AD是BC边上的中线,E是AD边上的动点,F是AB边上一点,若BF=4,当BE+EF取得最小值时,则∠EBC的度数为()A. 15∘B. 25∘C. 30∘D. 45∘4.如图,正ΔABC的边长为2,过点B的直线l⊥AB,且ΔABC与ΔA′B′C′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )A. 3B. 4C. 5D. 65.如图所示,在等边△ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A. △ABC的重心处B. AD的中点处C. A点处D. D点处6.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A. 3B. 6C. 5D. 47.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A. 40°B. 100°C. 140°D. 50°8.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN 周长取最小值时,则∠MPN的度数为()A. 140°B. 100°C. 50°D. 40°9.如图,∠AOB=30º,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若ΔPQR 周长最小,则最小周长是()A. 10 ∠ABD=∠ACEB. 10√2C. 20D. 20√210.如图,四边形ABCD中,∠BAD=120° , ∠B=∠D=90°,在BC、CD上分别找一点M、N,使ΔAMN周长最小时,则∠AMN+∠ANM的度数为()A. 130°B. 110°C. 120°D. 125°二、填空题11.如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则PA+PE的最小值是________.12.如图,等边△ABC的边长为2,过点B的直线l⊥AB且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是________.13.在直角坐标系中,点A(-1,1),点B(3,2),P是x轴上的一点,则PA+PB的最小值是________ 。
初二年级数学第十三周周测试题
最短路径问题
一、作图题(保留作图痕迹,不写作法)
1、如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短。
2、如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短。
3、如图,A为马厩,牧马人某天要从马厩牵出马,先到草地边的某一处牧马,再到河边饮水,然后回到马厩,请你帮他确定这一天的最短路线。
4、如图,A为马厩,B为帐篷,牧马人某天要从马厩牵出马,先到草地边的某一处牧马,再到河边饮水,
然后回到帐篷,请你帮他确定这一天的最短路线。
A
M
E
F
B
D C
5、如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近。
二、填空题
6、如图,等腰三角形ABC的底边BC的长是6cm,面积是24 cm2,腰AB的垂直平分线分别交AB、AC 于点E、F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm。
三、拓展与探究
7、如下图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C (-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;
归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);
运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并在图中画出Q点(保留作图痕迹,不写作法)。