E
M
CF
G B
N
H
随堂练习
某大学建立分校,本部与分校隔着两条平行的小河.如图,
小河甲的两岸为l1,l2,且l1//l2,小河乙的两岸为l3,l4,且l3//l4, A为本部大门,B为分校大门.为了方便两校区人员来往,
要在两条小河上各建一座桥,桥面垂直于河岸.为使A,B
两点间来往路径最短,试在图中画出
B′
AB′交直线l于点C,此时点C就是
所求作的点.
2.两线一点型问题. 如图,在直线l1和直线l2上分别找 到点M,N,使得△AMN的周长 最小.此时过点A分别作关于直线 l1,l2的对称点A1,A2,连接A1A2 分别交直线l1,l2于点M,N,则 点M,N即为所求.
A2 N
l2 A
M
l1
A1
3.两线两点型问题.
A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结
最
短
A∙
路 径
造桥选址问题
M
问
A′
a b
题
N
∙B
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
பைடு நூலகம்
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B
l
C
关于直线l的对称点的B′,连接
即AM+NB+MN的值最小.