模式识别 第八章 聚类分析
- 格式:pdf
- 大小:1.18 MB
- 文档页数:52
聚类分析在实际中的应用综述摘要:近几年来,模式识别技术在许多领域已得到或正得到卓有成效的应用。
它所研究的理论和方法在许多科学和技术领域中得到了广泛的重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。
聚类分析是非监督模式识别的重要分支,在模式识别、数据挖掘、计算机视觉以及模糊控制等领域具有广泛的应用,也是近年来得到迅速发展的一个研究热点,本文通过具体实例说明了聚类在模式识别中的一些应用。
关键字:聚类分析,模式识别1.引言聚类与分类的不同在于,聚类所要求划分的类是未知的。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。
传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS 等。
从机器学习的角度讲,簇相当于隐藏模式。
聚类是搜索簇的无监督学习过程。
与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。
聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。
而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。
聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。
2.聚类分析与模式识别的概念2.1 聚类分析2.1.1聚类分析定义对一批没有标出类别的模式样本集,按照样本之间的相似程度分类,相似的归为一类,不相似的归为另一类,这种分类称为聚类分析,也称为无监督分类。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。
传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
模式识别中的聚类分析方法聚类分析是一种常用的机器学习方法,用于将大量数据分为不同的类别或群组,并在其中寻找共性和差异性。
在模式识别中,聚类分析可以帮助我们理解数据集中不同对象之间的关系,以及它们之间的相似性和差异性。
本文将介绍聚类分析的基本概念、算法和应用,以及一些实用的技巧和方法,以帮助读者更好地理解和应用这一方法。
一、聚类分析的基础概念在聚类分析中,我们通常会面对一个数据点集合,其特征被表示为$n$个$d$维向量$x_{i}=(x_{i1},x_{i2},…,x_{id})$。
聚类分析的目标是将这些数据点划分为$k$个不同的类别或群组$G_{1},G_{2},…,G_{k}$,并使得同一类别中的数据点相似性较高,不同类别之间的相似性较低。
为了完成这个任务,我们需要先定义一个相似性度量方法,用于计算数据点之间的距离或相似度。
常用的相似性度量方法包括欧式距离、余弦相似度、Jaccard相似度和曼哈顿距离等,具体选择哪一种方法取决于我们要研究的数据类型和应用要求。
定义了相似性度量方法后,我们可以使用聚类算法将数据点分成不同的类别。
聚类算法的主要分类包括层次聚类和基于中心点的聚类。
层次聚类是通过自下而上的方法将数据点归属到不同的类别中,以便于构建聚类树或聚类图。
基于中心点的聚类则是通过不断地计算每个数据点离其所属类别的中心点的距离来更新类别簇,直到收敛为止。
通常来说,基于中心点的聚类算法更快且更易于应用,因此被广泛应用于实际问题中。
二、聚类分析的主要算法1. K-means 聚类算法K-means 聚类算法是一种基于中心点的聚类算法,其核心思想是通过不断更新每个数据点所属的类别,同时更新该类别的中心点,直到找到最优的聚类结果。
具体而言,K-means 聚类算法首先需要预设$k$个初始的聚类中心点,然后计算每个数据点与这$k$个聚类中心的距离,并将其分配到最近的一个聚类中心点所代表的类别中。
完成初始聚类后,算法会重新计算每个类别的中心点,并根据新的中心点重新分配所有数据点,直到所有数据点都不再变换为止。
模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。
2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。
3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。
(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。
(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。
确定了挖掘任务后,就要决定使用什么样的算法。
(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。
如果模式不满足要求,需要重复先前的过程。
6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。
7.分类过程由两步构成:模型创建和模型使用。
8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。
划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。