数据挖掘 第8章 聚类分析:基本概念和算法
- 格式:ppt
- 大小:1.29 MB
- 文档页数:47
数据挖掘中的聚类分析方法随着计算机应用的普及,信息系统产生的数据量日益增大,如何有效地利用巨量的原始数据分析现状和预测未来,己经成为人类面临的一大挑战。
由此数据挖掘技术应运而生并得以迅猛发展,这是快速增长的数据量和日益贫乏的信息量之间矛盾运动的必然结果。
数据挖掘(DataMining),又称为数据库中的知识发现(简称KDD),是从大量数据中提取可信的、新颖的、有效的并能被人们理解的模式的处理过程。
数据挖掘是一门新兴的技术,它以数据库技术作为基础,把逻辑学、统计学、机器学习、模糊学、可视化计算等多门学科的成果综合在一起,进行如何从数据库中得到有用信息的研究。
数据挖掘技术得到了人们的普遍关注,广泛应用于银行金融、保险、公共设施、政府、教育、远程通讯、软件开发、运输等各个企事业单位及国防科研上。
聚类分析是数据挖掘中的一个重要研究领域。
所谓聚类,就是把没有类别标记的样本集按某种准则划分成若干类,使类内样本的相似性尽可能大,而类间样本的相似性尽量小,是一种无监督的学习方法。
聚类分析通常是在没有先验知识支持的前提下进行的,它所要解决的就是在这种前提下,实现满足要求的类的聚合。
聚类分析的研究主要集中在聚类算法上,产生性能好而且实用的聚类算法是其终极目的。
聚类是一个富有挑战性的研究领域,采用基于聚类分析方法的数据挖掘在实践中己取得了较好的效果,在实际操作中往往不是采用单一的手段,而是采用多种手段和方法相结合根据潜在的各项应用,数据挖掘对聚类的典型要求有以下9个方面:⑴可伸缩性可伸缩性是指算法不论对于小数据集还是对于大数据集,都应是有效的在很多聚类算法当中,对于数据对象小于200个的小数据集合性很好,而对于包含成千上万个数据对象的大规模数据库进行聚类时,将会导致有不同的偏差结果。
此外,可伸缩性算法应该随着数据库大小的变化,其运行时间应该线性变化。
(2)处理不同字段类型的能力算法不仅要能处理数值型数据,还要有处理其它类型字段的能力,包括分类标称类型(catalog流Viminal),序数型(ordinal),二元类型(binary),或者这些数据类型的混合。
聚类分析算法
聚类分析是一种数据挖掘技术,它可以从大量数据中发现联系,建立相似的类别,以便于进一步理解数据的结构和特征。
简而言之,聚类分析是将相似的数据分组,以便更详细地了解数据结构,以及数据之间的关系。
聚类分析技术可以帮助人们从数据中发现有趣的结构,或者发现数据之间的联系,可以用于许多不同的应用,比如市场分析,客户分析,社会网络分析,生物信息学,图像分析等等。
聚类分析的过程主要包括几个步骤:首先,选择数据集,然后为数据定义一个相似度函数,利用这个函数来确定数据之间的相似度;接着,使用聚类算法(如K-means或其他)将数据分成不同的类别;最后,进行结果评估,以确定聚类分析算法的有效性。
聚类分析技术对于许多不同的应用都有重要的作用,它可以帮助我们发现数据之间的联系,更好地理解数据,并让我们更加容易地发现有价值的信息。
因此,聚类分析技术是数据挖掘的一个重要工具,可以帮助我们更好地利用数据来解决实际问题。
第8 章聚类分析在自然与社会科学研究中,存在着大量分类研究的问题,如病虫害种群消长演替规律的研究中,需要从生态系统出发,构造其数量、时间和空间关系的分类模式,以此来研究病虫害的发生规律。
聚类分析就是其分类研究的方法之一。
聚类分析是根据事物本身的特性研究个体分类的方法。
聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
根据分类对象的不同可分为样品聚类和变量聚类。
1)样品聚类样品聚类在统计学中又称为 Q 型聚类。
用 SPSS 的术语来说就是对事件(Cases)进行聚类,或是说对观测量进行聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进行分类。
2)变量聚类变量聚类在统计学又称为 R 型聚类。
反映同一事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某一方面进行研究。
由于人类对客观事物的认识是有限的,往往难以找出彼此独立的有代表性的变量,而影响对问题的进一步认识和研究。
例如在回归分析中,由于自变量的共线性导致偏回归系数不能真正反映自变量对因变量的影响等。
因此往往先要进行变量聚类,找出彼此独立且有代表性的自变量,而又不丢失大部分信息。
8.1 快速聚类过程(K-Means Cluster )调用此过程可完成由用户指定类别数的大样本资料的逐步聚类分析。
所谓逐步聚类分析就是先把被聚对象进行初始分类,然后逐步调整,得到最终分类。
[例子8-1]根据1962 年至1988 年积累的三化螟有关资料进行聚类分析,研究三化螟种群消长规律。
数据见表8-1,其中发生期是指卵盛孵高峰期(2 代以5 月31 日和3 代7 月20 日为零计算天数),F2-F3 为2 代至3 代的增殖系数,F3-F4 为3 代至4 代的增殖系数。
对幼虫发生量和发生期数据进行快速聚类,分析各年的发生程度。
1098.1.1 操作方法1)数据准备在数据管理窗口,定义变量名:年份、幼虫 2、幼虫 3、发生期 2、发生期 3、增殖23、增殖34,分别代表年份、第2 代幼虫发生量、第3 代幼虫发生量、第2 代发生期、第3 代发生期、F2-F3 增殖系数、F3-F4 增殖系数。
数据挖掘中的聚类分析技术数据挖掘是指通过从大量数据中发现模式、关联和趋势等有价值的信息的过程。
而聚类分析则是数据挖掘中一种常用的技术,它能够将相似的数据对象归为一类,从而帮助我们理解数据集的结构和特征。
本文将介绍聚类分析的基本概念、常见算法和应用领域。
一、聚类分析的基本概念聚类分析是一种无监督学习的方法,它不需要依赖预先定义的标签或类别信息。
聚类分析的目标是将数据对象划分为若干个组,使得组内的数据对象相似度高,而组间的相似度较低。
聚类分析的结果可以帮助我们发现数据集中的潜在结构、发现异常值以及进行数据预处理。
在聚类分析中,我们需要选择合适的相似度度量方法和聚类算法。
常用的相似度度量方法有欧氏距离、曼哈顿距离和余弦相似度等。
而常见的聚类算法包括K均值算法、层次聚类算法和密度聚类算法等。
二、常见的聚类分析算法1. K均值算法K均值算法是一种迭代的聚类算法,它将数据对象划分为K个簇,其中K是用户指定的参数。
算法的核心思想是通过最小化簇内数据对象与簇中心的距离来确定簇的划分。
具体而言,算法首先随机选择K个初始簇中心,然后将每个数据对象分配到与其距离最近的簇中心所在的簇,接着更新簇中心为簇内数据对象的均值,重复以上步骤直到簇中心不再变化或达到最大迭代次数。
2. 层次聚类算法层次聚类算法是一种基于距离的聚类算法,它通过计算数据对象之间的相似度或距离来构建一个层次结构的聚类结果。
算法的基本思想是从每个数据对象开始,逐步合并相似度最高的簇,直到所有数据对象都被合并为一个大簇或达到预设的簇的个数。
3. 密度聚类算法密度聚类算法是一种基于密度的聚类算法,它将数据对象划分为高密度区域和低密度区域。
算法的核心思想是通过计算每个数据对象的邻域内的数据对象个数来确定数据对象的核心点、边界点和噪声点。
常用的密度聚类算法有DBSCAN算法和OPTICS算法等。
三、聚类分析的应用领域聚类分析在各个领域都有广泛的应用。
在市场营销中,聚类分析可以帮助企业发现潜在的消费者群体,从而制定个性化的营销策略。
聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
数据挖掘--聚类方法(1)聚类就是将数据对象分组成多个类或者簇,划分的原则是在同一个粗中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
属于一种无指导的学习方法。
好的聚类算法应该满足以下几个方面:(1)可伸缩型:无论对小数据量还是大数据量应该都是有效的。
(2)具有处理不同类型属性的能力。
(3)能够发现任意形状的聚类。
(4)输入参数对领域知识的弱依赖性(5)对于输入记录顺序不敏感(6)能够处理很多维度的数据,而不止是对3维左右的数据有效(7)处理噪声数据的能力(8)基于约束的距离:既能找到满足特定的约束,又具有良好聚类特性的数据分组(9)挖掘出来的信息是可理解的和可用的。
聚类分析主要在以下几个方面应用:(1)可以作为其他算法的预处理步骤(2)可以作为一个独立的工具来获得数据的分布情况(3)可以完成孤立点挖掘,用来预示欺诈行为的存在。
基本概念聚类分析的输入可以用一组有序对(X,s)或(X,d)表示,这里X表示一组样本,s和d分别是度量样本间相似度或相异度(距离)的标准。
聚类系统的输出是一个分区C={C1,C2,…,Ck},其中Ci是X的子集,成为类。
类的特征可以用如下几种方式表示: 通过类的中心或类的边界点表示一个类。
使用聚类树中的结点图形化地表示一个类。
使用样本属性的逻辑表达式表示类。
聚类分析的方法:聚类分析有很多大量的、经典的算法,比如k-平均、k-中心点、PAM、CLARANS, BIRTH,CURE,OPTICS,DBSCAN,STING,CLIQUE,WAVECLUSTER等。
度量标准:一个聚类分析过程的质量取决于对度量标准的选择,因此必须仔细选择度量标准。
(1)距离函数明可夫斯基距离:x, y 是相应的特征,n是特征的维数。
则明可夫斯基距离d(x,y)表示如下,r=2为欧式距离。
二次型距离:余弦距离二元特征样本的距离假定x和y分别是n维特征,xi和yi分别表示每维特征,且xi和yi的取值为二元类型数值{0,1}。