第8章 聚类分析:基本概念和算法
- 格式:ppt
- 大小:2.72 MB
- 文档页数:56
聚类算法的定义聚类算法是一种机器学习方法,用于将数据集中的对象分为若干组,使得同一组内的对象相似度较高,而不同组之间的相似度较低。
这种算法在数据挖掘和模式识别中广泛应用,被用来发现数据集中的潜在模式和结构。
聚类算法的核心思想是通过度量对象之间的相似性或距离来划分数据集。
常用的聚类方法包括层次聚类、K均值聚类、密度聚类等。
层次聚类是一种自底向上的方法,它将每个对象视为一个单独的类,然后逐步合并相似的类,直到所有类都合并为一个大类。
这种方法能够自动确定聚类的数量,并且可以用树状图表示聚类的层次结构。
K均值聚类是一种迭代算法,它首先随机选择K个聚类中心,然后将每个对象分配到离其最近的聚类中心所对应的类中。
接下来,根据当前聚类中的对象重新计算聚类中心,并重复上述过程直到聚类中心不再变化。
K均值聚类适用于数据集中的球状聚类。
密度聚类是一种基于对象之间密度的方法,它将密度较高的区域划分为一个聚类,而将低密度区域划分为不同的聚类。
这种方法能够发现任意形状的聚类,并且对噪声和离群点具有较好的鲁棒性。
聚类算法在各个领域都有广泛的应用。
在市场营销中,可以使用聚类算法对消费者进行细分,从而更好地理解他们的需求和行为。
在医学领域,聚类算法可以帮助医生诊断疾病并制定个性化的治疗方案。
在社交网络分析中,聚类算法可以帮助发现社群结构和关键节点。
在推荐系统中,聚类算法可以对用户进行分组,从而提供更加个性化的推荐。
聚类算法是一种强大的工具,可以帮助我们理解和挖掘数据中的模式和结构。
通过将相似的对象分到同一组中,聚类算法能够提供有关数据的新见解,并为各个领域的决策提供支持。
第8 章聚类分析在自然与社会科学研究中,存在着大量分类研究的问题,如病虫害种群消长演替规律的研究中,需要从生态系统出发,构造其数量、时间和空间关系的分类模式,以此来研究病虫害的发生规律。
聚类分析就是其分类研究的方法之一。
聚类分析是根据事物本身的特性研究个体分类的方法。
聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
根据分类对象的不同可分为样品聚类和变量聚类。
1)样品聚类样品聚类在统计学中又称为 Q 型聚类。
用 SPSS 的术语来说就是对事件(Cases)进行聚类,或是说对观测量进行聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进行分类。
2)变量聚类变量聚类在统计学又称为 R 型聚类。
反映同一事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某一方面进行研究。
由于人类对客观事物的认识是有限的,往往难以找出彼此独立的有代表性的变量,而影响对问题的进一步认识和研究。
例如在回归分析中,由于自变量的共线性导致偏回归系数不能真正反映自变量对因变量的影响等。
因此往往先要进行变量聚类,找出彼此独立且有代表性的自变量,而又不丢失大部分信息。
8.1 快速聚类过程(K-Means Cluster )调用此过程可完成由用户指定类别数的大样本资料的逐步聚类分析。
所谓逐步聚类分析就是先把被聚对象进行初始分类,然后逐步调整,得到最终分类。
[例子8-1]根据1962 年至1988 年积累的三化螟有关资料进行聚类分析,研究三化螟种群消长规律。
数据见表8-1,其中发生期是指卵盛孵高峰期(2 代以5 月31 日和3 代7 月20 日为零计算天数),F2-F3 为2 代至3 代的增殖系数,F3-F4 为3 代至4 代的增殖系数。
对幼虫发生量和发生期数据进行快速聚类,分析各年的发生程度。
1098.1.1 操作方法1)数据准备在数据管理窗口,定义变量名:年份、幼虫 2、幼虫 3、发生期 2、发生期 3、增殖23、增殖34,分别代表年份、第2 代幼虫发生量、第3 代幼虫发生量、第2 代发生期、第3 代发生期、F2-F3 增殖系数、F3-F4 增殖系数。
聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
聚类算法与应用聚类算法是一种将数据集中的对象划分成多个相似的组或簇的算法。
它在数据挖掘、机器学习和模式识别等领域中广泛应用。
聚类算法可以帮助我们发现数据集中的隐藏结构、特征和关系,为数据分析提供基础。
一、聚类算法的基本原理聚类算法的基本原理是将数据集中的对象划分成若干个簇,使得簇内的对象相似度高,簇间的相似度低。
聚类算法通常根据给定的相似度度量或距离度量,通过计算对象之间的相似度或距离,将相似的对象划分到同一个簇中。
常用的聚类算法包括层次聚类、K均值聚类和密度聚类等。
层次聚类算法根据对象之间的相似度逐步合并簇,形成一个层次结构。
而K均值聚类算法将数据集划分成K个簇,通过迭代求解质心位置,使得每个对象到所属簇的质心的距离最小。
密度聚类算法则根据对象周围的密度分布,将密度高的区域划分为簇。
二、聚类算法的应用领域聚类算法在各个领域中都有广泛的应用。
1.市场分析聚类算法可以帮助企业对消费者进行细分和分类,根据不同的消费特征和行为习惯,将消费者划分成不同的群体。
这样企业可以根据不同的消费群体制定不同的市场营销策略,提高营销效果。
2.社交网络分析聚类算法可以分析社交网络中的用户关系,发现用户之间的社区和子群体。
这可以帮助社交网络平台提供更好的推荐和个性化服务,加强用户之间的连接和互动。
3.图像处理聚类算法可以对图像进行分割和提取特征。
通过将相似的像素点划分成同一个簇,可以实现图像的分区和图像对象的识别。
4.文本挖掘聚类算法可以将文本数据集中的文章或文档划分成不同的主题或类别。
这可以帮助人们在大量文本数据中迅速找到感兴趣的信息。
5.生物信息学聚类算法可以对生物序列和基因表达数据进行聚类分析。
通过将相似的序列或基因表达模式划分到同一个簇中,可以发现基因的功能和相互关系。
三、聚类算法的应用案例1.电商行为分析电商平台可以通过聚类算法将用户划分成不同的消费群体,例如高消费群体、低消费群体和潜力用户群体等,然后针对不同群体的消费特征制定不同的市场策略,提高用户转化率和促销效果。
1.聚类定义“聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性” ——wikipedia“聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
它是一种重要的人类行为。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
”——百度百科说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。
简单理解,如果一个数据集合包含N 个实例,根据某种准则可以将这N 个实例划分为 m 个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。
2.聚类过程:1) 数据准备:包括特征标准化和降维.2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中.3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组.5) 聚类结果评估:是指对聚类结果进行评估.评估主要有 3 种:外部有效性评估、内部有效性评估和相关性测试评估.3 聚类算法的类别没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图 1 所示的4 个类别.3.聚类算法基于层次聚类算法:采用抽样技术先对数据集 D 随机抽取样本,再CURE:采用分区技术对样本进行分区,然后对每个分区局部聚类,最后对局部聚类进行全局聚类也采用了随机抽样技术,该算法在计算两个对ROCK:象的相似度时,同时考虑了周围对象的影响首先由数据集构造成一个 K-最近邻图Gk ,再通过一个图的划分算法将图 Gk 划分成大量CHEMALOEN(变色龙的子图,每个子图代表一个初始子簇,最后用算法):一个凝聚的层次聚类算法反复合并子簇,找到真正的结果簇SBAC:BIRCH:BUBBLE:BUBBLE-FM:SBAC 算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较高的权值BIRCH 算法利用树结构对数据集进行处理,叶结点存储一个聚类,用中心和半径表示,顺序处理每一个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程BUBBLE 算法则把 BIRCH 算法的中心和半径概念推广到普通的距离空间BUBBLE-FM 算法通过减少距离的计算次数,提高了BUBBLE 算法的效率基于划分聚类算法(partition clustering)是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚k-means:点不一定是聚类中的一个点,该算法只能处理数值型数据K-Means 算法的扩展,采用简单匹配方法来度量k-modes:分类型数据的相似度结合了 K-Means 和 K-Modes 两种算法,能够处k-prototypes:理混合型数据在迭代过程中选择簇中的某点作为聚点,PAM k-medoids:是典型的k-medoids 算法CLARA 算法在PAM 的基础上采用了抽样技术,能CLARA:够处理大规模数据CLARANS 算法融合了PAM 和CLARA 两者的优点,CLARANS:是第一个用于空间数据库的聚类算法采用了空间索引技术提高了 CLARANS 算法的效Focused CLARAN:率模糊集合理论引入聚类分析中并提出了 PCM 模PCM:糊聚类算法基于密度聚类算法:DBSCAN 算法是一种典型的基于密度的聚类算法,该算法采用空间索引技术来搜索对象的邻域,引入DBSCAN:了“核心对象”和“密度可达”等概念,从核心对象出发,把所有密度可达的对象组成一个簇算法通过泛化 DBSCAN 算法中邻域的概念,以适应GDBSCAN:空间对象的特点DBLASD:OPTICS 算法结合了聚类的自动性和交互性,先生OPTICS:成聚类的次序,可以对不同的聚类设置不同的参数,来得到用户满意的结果FDC 算法通过构造 k-d tree 把整个数据空间划分FDC:成若干个矩形空间,当空间维数较少时可以大大提高DBSCAN 的效率基于网格的聚类算法:利用网格单元保存数据统计信STING:息,从而实现多分辨率的聚类在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
聚类算法详解
聚类算法是一种将数据集中的对象分组成相关性较高的子集的技术。
该算法寻找数据点之间的相似性,并根据这些相似性将它们划分到不同的群组中。
常见的聚类算法包括K均值聚类、层次聚类和密度聚类。
其中,K均值聚类是一种基于距离的聚类方法,它将数据点划分到K个聚类中心,使得每个数据点到其所属聚类中心的距离最小化。
层次聚类是通过建立数据点之间的层次结构来进行聚类,它可以是自下而上的聚合聚类或自上而下的分裂聚类。
密度聚类是基于密度的聚类方法,它通过定义一个密度阈值来划分数据点,将高密度区域视为聚类。
聚类算法在许多应用领域中都有广泛的应用,如市场细分、社交网络分析和图像处理等。
它可以帮助我们揭示数据的内在结构,发现相似的样本,并提供有关数据集的全局概览。
需要注意的是,聚类算法需要根据实际问题选择适当的算法和参数。
此外,为了确保聚类结果的质量,还需要对数据进行预处理,如特征选择、特征缩放和异常值处理等。
总之,聚类算法是一种重要的数据分析技术,它可以帮助我们理解数据集中的模式和关系。
通过应用适当的算法,我们可以从复杂的数据中提取有用的信息,并为进一步的分析和决策提供支持。
聚类分析基本概念梳理聚类分析:简称聚类(clustering),是一个把数据对象划分成子集的过程,每个子集是一个簇(cluster),使得簇中的对象彼此相似,但与其他簇中的对象不相似。
聚类成为自动分类,聚类可以自动的发现这些分组,这是突出的优点。
聚类分析是没有给定划分类别的情况下,根据样本相似度进行样本分组的一种方法,是一种非监督的学习算法。
聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度划分为若干组,划分的原则是组内距离最小化而组间距离最大化,如下图所示:K-Means:K-均值聚类也称为快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K。
该算法原理简单并便于处理大量数据。
K-中心点:K-均值算法对孤立点的敏感性,K-中心点算法不采用簇中对象的平均值作为簇中心,而选用簇中离平均值最近的对象作为簇中心。
系统聚类:也称为层次聚类,分类的单位由高到低呈树形结构,且所处的位置越低,其所包含的对象就越少,但这些对象间的共同特征越多。
该聚类方法只适合在小数据量的时候使用,数据量大的时候速度会非常慢。
基本概念梳理监督学习:分类成为监督学习(supervised learning),因为给定了类标号的信息,即学习算法是监督的,因为它被告知每个训练元素的类隶属关系。
无监督学习(unsupervised learning):因为没有提供类标号信息。
数据挖掘对聚类的典型要求如下:可伸缩性、处理不同属性类的能力、发现任意形状的簇、处理噪声数据的能力、簇的分离性基本聚类方法描述:1.划分方法:(这是聚类分析最简单最基本的方法)采取互斥簇的划分,即每个对象必须恰好属于一个组。
划分方法是基于距离的,给定要构建的分区数k,划分方法首先创建一个初始划分,然后它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来改进划分。
一个好的划分准则是:同一个簇中的相关对象尽可能相互“接近”或相关,而不同簇中的对象尽可能地“远离”或不同。