第八章 聚类分析
- 格式:ppt
- 大小:172.00 KB
- 文档页数:24
1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。
第8章聚类分析与判别分析分类学是人类认识世界的基础科学。
聚类分析和判别分析是研究事物分类的基本方法。
聚类分析聚类分析(Cluster Analysis)是根据事物本身的特性研究个体分类的方法。
聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
根据分类对象的不同分为样品聚类和变量聚类。
1.样品聚类样品聚类在统计学中又称为Q型聚类。
用SPSS的术语来说就是对事件(Cases)进行聚类,或是说对观测量进行聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进行分类。
样品聚类是进行判别分析之前的必要工作。
根据样品聚类的结果进行判别分析,得出判别函数,进而对其他研究对象属于哪一类作出判断。
例如在选拔少年运动员时首先要根据少年的身体形态、身体素质、心理素质、生理功能的各种指标(变量)进行测试,得到各种指标的测试值(变量值),据此对少年进行分类。
根据分类结果再求得出选材的判别函数,作为选材的依据。
2.变量聚类变量聚类在统计学中又称为R型聚类。
反映同一事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某一方面进行研究。
由于人类对客观事物的认识是有限的,往往难以找出彼此独立的有代表性的变量,而影响对问题的进一步认识和研究。
例如在回归分析中,由于自变量的共线性导致偏回归系数不能真正反映自变量对因变量的影响等。
因此往往先要进行变量聚类,找出彼此独立且有代表性的自变量,而又不丢失大部分信息。
判别分析判别分析是根据表明事物特点的变量值和它们所属的类求出判别函数,根据判别函数对未知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需要对某个个体属于哪一类进行判断。
判别分析与聚类分析的不同在于判别分析要求已知一系列反映事物特征的数值变量值及其分类变量值。
分类命令的功能其中包括:(1)K-Means Cluster进行快速聚类的过程。
(略)(2)Hierarchical Cluster进行样本聚类和变量聚类的过程。
SPSS统计分析第八章聚类分析与判别分析聚类分析与判别分析是SPSS统计分析中非常重要的两个方法。
聚类分析是寻找数据之间的相似性,将相似的数据划分为一个簇,从而实现对数据的归类和分组。
判别分析则是寻找数据之间的差异性,帮助我们理解不同因素对于数据的影响程度,从而实现对数据的分类预测。
首先,我们来介绍聚类分析。
聚类分析是根据数据之间的相似性进行归类的一种方法,通过度量数据之间的相似性,将相似的数据归为一类。
它在寻找数据内在组织结构和特点上具有很大的作用。
在SPSS中进行聚类分析的步骤如下:1.载入数据集:在SPSS软件中,选择"文件"->"打开"->"数据",选择需要进行聚类分析的数据集。
2.选择聚类变量:在"分析"->"分类"->"聚类"中,选择需要进行聚类分析的变量。
可以选择一个或多个变量作为聚类变量,决定了聚类的维度。
3.设置聚类参数:在设置参数的对话框中,可以选择使用不同的距离测度和聚类算法。
距离测度可以选择欧氏距离、曼哈顿距离、切比雪夫距离等,而聚类算法可以选择层次聚类、K均值聚类等。
根据具体的数据特点,选择合适的参数。
4.进行聚类分析:点击"确定"按钮,SPSS会自动进行聚类分析,并生成聚类的结果。
聚类结果可以通过树状图、散点图等形式展示,便于我们对数据的理解和分析。
接下来,我们来介绍判别分析。
判别分析是一种通过建立数学模型,根据不同的预测变量对数据进行分类和预测的方法。
判别分析可以帮助我们理解不同因素对于数据分类的重要性,从而进行有针对性的分析和预测。
在SPSS中进行判别分析的步骤如下:1.载入数据集:同样,在SPSS软件中,选择"文件"->"打开"->"数据",选择需要进行判别分析的数据集。