莱钢90t LF/VD精炼钢包智能吹氩技术的开发与应用
- 格式:pdf
- 大小:158.36 KB
- 文档页数:2
LF精炼炉底吹氩过程中的氩气流量控制发表时间:2018-09-27T18:52:49.657Z 来源:《知识-力量》2018年9月下作者:刘艳奎[导读] 本文通过对LF精炼炉底吹氩气的过程以及相关系统进行分析,在实际生产中氩气流量的难以控制的主要因素,同时选用分级结构模糊自适应控制系统对氩气流量进行相关的控制,结果发现,模糊自适应流量控制在较短的时间内便达到了相关的氩气流量设定值域,且无法进行调控。
(唐山三友氯碱有限责任公司,河北唐山 063305)摘要:本文通过对LF精炼炉底吹氩气的过程以及相关系统进行分析,在实际生产中氩气流量的难以控制的主要因素,同时选用分级结构模糊自适应控制系统对氩气流量进行相关的控制,结果发现,模糊自适应流量控制在较短的时间内便达到了相关的氩气流量设定值域,且无法进行调控。
而常规的控制曲线经过长时间的波动,才能恢复到预期设定的值域。
在实际的氩气流量控制中,模糊自适应控制效果要明显优于其他控制的实际控制效果。
关键词:氩气;LF精炼炉;氩气流量控制1 前言随着科学技术与经济社会的不断深入发展,每个行业都在高精尖发展。
在日常建设生产过程中,人们对于钢材的规格和质量的相关要求更为严格。
为此,炉外精炼已经成为钢铁厂生产中最为重要的一环,尤其是LF精炼炉应用最为广泛,而在LF精炼炉中,氩气流量控制是亦是比较重要的一个组成部分。
目前的钢铁生产过程中,LF精炼炉底吹氩是一种采取流量负反馈的的常用系统。
但在LF精炼炉底吹氩实际生产过程中,采用常规控制手段难以现实对氩气流量的精准控制,主要原因是通常被控制对象充满着非线性的不确定性以及系统在工作中所产生的剧烈干扰等因素影响。
2 LF精炼炉底吹氩系统概论当钢水进入钢包之后,氩气通过钢包不断地进入钢液体中,进而形成较多的氩气泡,这些气泡在钢水中众多的氮气、氧气以及氢气相当于是一个压力几乎为零的密闭空间,为此其他气体便不断的向气泡扩散开来,随着氮气和氢气不断的增多,气泡中的压力也随之增加,进而气泡不断的上涨。
钢包底吹氩控制系统的优化设计一、引言钢包底吹氩控制系统在钢铁冶炼过程中起着至关重要的作用。
它通过控制底吹氩气的流量和压力,实现钢水中氧含量的控制,从而提高钢水质量和冶炼效率。
然而,在现有的底吹氩控制系统中,仍存在一些问题和待优化的空间。
本文将针对这些问题进行探讨,并提出一种优化设计方案,旨在改善底吹氩控制系统的性能。
二、问题分析1. 氩气流量不稳定:目前的底吹氩控制系统在控制氩气流量时存在一定的波动性,这可能导致钢水中氧含量无法稳定控制,使得钢水质量下降。
2. 压力控制不准确:底吹氩控制系统中的压力传感器精度有限,无法实现精确的压力控制,这可能影响到氩气的吹入效果。
3. 控制策略过于简单:目前的底吹氩控制系统采用的控制策略相对简单,无法充分考虑到钢水冶炼过程中的复杂动态变化,导致控制效果有限。
三、优化设计方案为了改善钢包底吹氩控制系统的性能,我们提出以下优化设计方案:1. 引入先进的气体流量控制技术:通过采用先进的气体流量控制器,可以实现对氩气流量的精确控制。
该控制器能够根据实时测量的氩气流量反馈信息,调整控制阀门的开度,以实现稳定的氩气流量输出。
2. 优化压力传感器选择:选择高精度的压力传感器,并进行准确的校准和调整,以提高底吹氩控制系统中压力的测量和控制精度。
3. 制定复杂的控制策略:结合钢水冶炼过程的动态特性,制定更为复杂的控制策略。
该策略应考虑到钢水温度、氧含量、氩气流量等多个因素的综合影响,并通过建立合适的数学模型和控制算法,实现对底吹氩控制系统的智能化控制。
四、实施方案在实施优化设计方案时,需要考虑以下几个方面:1. 系统硬件的更新:根据优化设计方案的要求,对底吹氩控制系统的硬件进行更新,包括更换控制器、传感器等设备,并确保其与现有系统的兼容性。
2. 软件算法的优化:根据新的控制策略,优化底吹氩控制系统的软件算法,确保其能够准确地根据实时数据进行控制决策,并实现智能化控制。
3. 系统测试与调试:在实施优化设计方案后,进行系统测试与调试,验证新设计的稳定性和性能。
钢包底吹氩工艺开发摘要:钢包底吹氩工艺是一种有效的钢水处理方法,通过向钢包底部吹入氩气,使钢水中的杂质和气体充分上浮,达到净化钢水的目的。
本文主要介绍了钢包底吹氩工艺的原理、开发过程及应用效果,阐述了该工艺对提高钢水质量和连铸效率的影响。
一、钢包底吹氩工艺原理钢包底吹氩工艺的原理是在钢包底部通过特制的喷嘴向钢水中吹入氩气。
氩气在钢水中形成气泡,气泡在上升过程中会吸附钢水中的杂质,并携带杂质上浮,从而达到净化钢水的目的。
同时,氩气的搅拌作用还可以使钢水成分和温度更加均匀,提高钢水的质量。
二、钢包底吹氩工艺开发钢包底吹氩工艺的开发主要包括工艺流程设计、设备选型和控制系统优化三个环节。
首先,需要确定合适的氩气流量、压力和喷嘴结构,保证氩气能够充分搅拌钢水。
其次,需要根据钢包容量、钢水处理量和现场实际情况选择合适的设备型号和数量。
最后,需要对控制系统进行优化,确保工艺过程的稳定性和可靠性。
三、钢包底吹氩工艺应用效果钢包底吹氩工艺在多个钢铁企业得到了广泛应用,并取得了良好的应用效果。
首先,该工艺可以显著提高钢水质量,降低钢水中杂质含量,提高钢材的力学性能和耐腐蚀性能。
其次,该工艺可以显著提高连铸效率,降低铸造成本,提高钢铁企业的经济效益。
此外,该工艺还可以减少铸坯裂纹、提高铸坯质量,延长铸坯使用寿命。
四、结论钢包底吹氩工艺是一种有效的钢水处理方法,通过向钢包底部吹入氩气,可以显著提高钢水质量和连铸效率。
该工艺的开发和应用对于提高钢铁企业的产品质量和经济效益具有重要意义。
未来,还需要进一步研究和优化钢包底吹氩工艺,以推动钢铁工业的持续发展。
在铜冶金工业中,新型双侧吹熔池熔炼工艺设备的应用已经成为了一种趋势。
这种工艺设备可以提高铜金属的产量和质量,同时降低能耗和污染物排放,为铜冶金工业的可持续发展做出了巨大的贡献。
铜冶金工业是一个重要的基础工业,对于国民经济和科学技术的发展具有重要意义。
然而,传统的铜冶金工艺存在一些问题,如能耗高、污染物排放量大、产量低等。
LF精炼炉高效加热工艺分析与应用摘要:LF精炼是转炉炼钢与连铸工艺之间的过渡环节,既要满足转炉炼钢的快节奏,又要为连铸提供合格的钢液。
LF精炼能否在生产节奏要求时间内使钢水成分、温度、洁净度达到相应的技术要求,已成为炼钢厂生产的限制环节。
因此在了解LF精炼工艺特点的基础上,强化其冶金功能,以满足生产的要求。
关键词:LF精炼炉;高效加热工艺;应用以高效率—炉外精炼—连续铸造为代表的短流程工艺凭借其节能、高效、技术手段先进等一系列优势而得以在社会上大规模推广应用。
钢水炉外精炼,实际上是将传统炼钢炉专炉或电弧炉中能够完成或部分完成的精炼任务(比方说脱氧、脱碳、脱硫、祛除废物等)转至炉外的“钢包”或其它公用容器中单独操作处理,所以国外又称之为一次精炼(OneRefiningmaking)、二次炼钢(Secondarysteelmaking)或钢包冶金(LadleMetalmaking)。
炉外精炼的出现和发展,是炼钢工艺流程和科学技术有机结合的重大突破,它使以往的一步炼钢转变为“炉内初炼、炉外精炼”,从而实现了“一步炼钢”,使得炼钢方法发生重大改变;而且对提高冶炼水平、优化产品结构以及协调生产起到至关重要的作用,衔接炼钢连铸环节,甚至对连铸坯热铸造的全流程起到关键作用。
因为短流程中钢包炉的主要功能之一就是作为电炉连铸之间的缓冲器,起到承上启下、协调节奏的作用,更好地实现多炉连浇。
功能之二就是最终决定产品的出炉质量、化学性质和温度控制。
所以必须在技艺研究、总体设备、真空环境、液压以及计算机控制等方面有所创新,使整台设备达到领先水平。
1LF精炼工艺的特点1.1石墨电极埋弧加热LF炉以石墨电极与钢水之间产生的高温电弧为热源,对钢水进行加热,升温速度为4~5℃/min。
加热时将石墨电极插入泡沫渣层中,进行埋弧操作,高温电弧在渣层内产生。
泡沫渣对高温电弧起到屏蔽作用,一方面减少了高温电弧对钢包的热辐射,保护了炉衬;另一方面钢水和炉渣可以有效的吸收电弧热,提高了热效率。
钢包底吹氩控制系统的优化设计钢包底吹氩控制系统是钢铁生产过程中的重要环节,其优化设计能够提高钢铁生产的效率和质量。
本文将从钢包底吹氩控制系统的原理、优化设计的目的和方法以及实际应用效果等方面进行探讨。
一、钢包底吹氩控制系统的原理钢包底吹氩控制系统是通过控制钢包底部喷口的氩气流量和压力来实现钢水的混合和温度控制。
钢包底吹氩控制系统的主要组成部分包括氩气供应系统、氩气流量控制系统、氩气压力控制系统和温度控制系统等。
二、优化设计的目的和方法优化设计的目的是提高钢铁生产的效率和质量。
具体方法包括以下几个方面:1.优化氩气供应系统,确保氩气的稳定供应和质量。
2.优化氩气流量控制系统,提高氩气流量的精度和稳定性。
3.优化氩气压力控制系统,确保氩气压力的稳定和可靠性。
4.优化温度控制系统,提高钢水的温度控制精度和稳定性。
三、实际应用效果钢包底吹氩控制系统的优化设计在实际应用中取得了显著的效果。
通过优化设计,钢铁生产的效率和质量得到了大幅提升。
具体表现在以下几个方面:1.钢水的温度控制精度和稳定性得到了显著提高,减少了钢铁生产中的温度偏差和浪费。
2.钢水的混合效果得到了改善,减少了钢铁生产中的不均匀性和质量问题。
3.钢铁生产的效率得到了提高,减少了生产时间和成本。
4.钢铁生产的质量得到了提高,减少了废品率和质量问题。
综上所述,钢包底吹氩控制系统的优化设计是钢铁生产中的重要环节,其优化设计能够提高钢铁生产的效率和质量。
通过优化氩气供应系统、氩气流量控制系统、氩气压力控制系统和温度控制系统等方面的设计,可以实现钢水的混合和温度控制,从而提高钢铁生产的效率和质量。
在实际应用中,钢包底吹氩控制系统的优化设计取得了显著的效果,为钢铁生产的发展做出了重要贡献。
我是搞锻造热处理的,不过也曾在我厂VD包和LF炉上干过,现简单介绍如下自己干过的、一些钢水精炼的方法。
真空除气法(VD)法 VD炉没有热源,一般不用造渣精炼,常规做法是将精炼包吊入真空坑抽真空十几分钟后即吊出注锭,一般无底吹氩,液渣面交换差(渣面下~300mm钢液的脱气效果好,深部脱气差),注温比LF低。
炼钢厂用于要求稍宽松的冶炼。
VD法的基本功能是:①脱气和真空碳脱氧。
②脱硫。
真空氧气脱碳(VOD)法由西德莎尔等钢厂在1965年开发,VOD法是在真空减压条件下顶吹氧气脱碳,并通过包底吹氩促进钢液循环,在冶炼不锈钢时能容易地把钢中碳降到0.02%~0.08%范围内而几乎不氧化铬。
并对钢液进行真空处理,加上氩气的搅拌作用,反应的动力学条件很有利,能获得良好的去气、去夹杂物的效果。
氩氧混合脱碳(AOD)法基本功能是:①去碳保铬。
②脱硫。
美国1968年开发。
AOD法的含义是用氩、氧混合气体脱除钢中的碳、气体及夹杂物,可以用廉价的高碳铬铁炼出优质的低碳不锈钢。
这是一种在非真空下精炼含铬不锈钢的工艺。
它是将氩氧混合气体用消耗式喷枪吹入钢液中,氧首先与钢中碳起反应生成一氧化碳CO,降低钢中的碳含量。
此时生成的CO分压较高,由于存在氩气泡,分压较高的CO即扩散到氩气泡中,降低了碳氧反应所生成的CO分压,促进了碳氧反应的继续进行。
如果氩气充分而且分布良好,只要熔池中有足够的氧,脱碳反应就不会停止,因而可获得超低碳的钢(脱碳量为0.7~1.6%)。
真空下循环除气RH法它是利用抽吸管提升钢液进真空腔而使钢液脱气,其基本功能是脱碳和脱氧。
扩展功能可以使钢水深脱碳,强化脱硫处理。
钢包精炼法(LRF)钢包精炼,由于设备先进而显示出它的独特优点:容易控制钢液温度;严格控制钢的化学成分;精确控制钢液的脱氧、脱硫,控制硫含量低于0.005%;由于工艺灵活性大,适应性强,炼出的高质量的钢种覆盖面大;同时以减少炼钢炉的时间来提高生产率;并可在炼钢与浇铸之间,提供一定的缓冲作用。