workbench瞬态动力分析
- 格式:ppt
- 大小:1.24 MB
- 文档页数:52
Workbench瞬态热分析问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。
分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。
传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。
传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。
热分析类型主要有稳态热分析和瞬态热分析。
稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。
在稳态热分析中,任意节点的温度不随时间的变化而变化。
一般来说,在稳态热分析中所需要的唯一材料属性是热导率。
在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。
在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。
在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。
接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。
由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。
二、分析思路及流程在分析中,我们忽略空气的流动。
先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。
分析流程如下图所示:三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。
由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。
在本文中,我将为您撰写一篇关于ANSYS Workbench瞬态动力学实例的文章。
我们将深入探讨ANSYS Workbench在瞬态动力学仿真方面的应用,从简单到复杂、由浅入深地讨论其原理和实践操作,并共享个人观点和理解。
第一部分:介绍ANSYS Workbench瞬态动力学仿真ANSYS Workbench是一种用于工程仿真的全面评台,包含了结构、流体、热传递、多物理场等多种仿真工具。
瞬态动力学仿真是ANSYS Workbench的重要应用之一,它能够模拟在时间和空间上随机变化的动力学过程,并对结构在外部力作用下的动力响应进行分析。
在瞬态动力学仿真中,ANSYS Workbench可以模拟诸如碰撞、冲击、振动等动态载荷下的结构响应,用于评估零部件的耐久性、振动特性、动态稳定性等重要工程问题。
通过对这些现象的模拟和分析,工程师可以更好地了解结构在实际工况下的性能,进而进行有效的设计优化和改进。
第二部分:实例分析为了更直观地展示ANSYS Workbench瞬态动力学仿真的应用,我们以汽车碰撞仿真为例进行分析。
假设我们需要评估汽车前部结构在碰撞事故中的动态响应,我们可以通过ANSYS Workbench建立汽车前部结构的有限元模型,并对其进行碰撞载荷下的瞬态动力学仿真。
我们需要构建汽车前部结构的有限元模型,包括车身、前保险杠、引擎盖等部件,并设定材料属性、连接方式等。
接下来,我们可以在仿真中引入具体的碰撞载荷,如40km/h车速下的正面碰撞载荷,并进行瞬态动力学仿真分析。
通过仿真结果,我们可以获取汽车前部结构在碰撞中的应力、应变分布,以及变形情况,从而评估其在碰撞事故中的性能表现。
第三部分:个人观点与总结通过以上实例分析,我们可以看到ANSYS Workbench瞬态动力学仿真在工程实践中的重要应用价值。
瞬态动力学仿真不仅能够帮助工程师分析结构在动态载荷下的响应,还可以为设计优化、安全评估等工程问题提供重要参考。
ANSYS workbench齿轮啮合瞬态动力学分析齿轮传动是机械系统传动方式中应用最为广泛的一种,今天给介绍一下如何利用workbench实现齿轮啮合的瞬态动力学分析。
有限元分析流程分为3大步、3小步,如下图所示。
今天将以这种方式介绍使用workbench实现齿轮啮合的分析流程。
图1 有限元分析流程一、前处理1.1 几何模型的构建本文几何模型在SolidWorks中创建,并导入workbench中,如图所示图2 齿轮对几何模型1.2 材料定义材料选用结构钢:密度:7850kg/m3,杨氏模量:2.1e11Pa,泊松比:0.31.3 有限元模型的构建有限元模型的构建包括材料赋予、网格划分以及连接关系的构建1.3.1 材料赋予双击瞬态动力学分析流程中的Model,进入Mechanical界面,单击项目树Geometry 下的两个零件,左下角细节框中,Material处指派steel材料1.3.2 网格划分为便于分析及收敛,对网格进行一个简单的控制:首先在左侧项目树Mesh处插入一个method,选中两个齿轮,划分方法为MultiZone;然后插入两个Size,对几个参与啮合的齿面进行尺寸控制,得到了如图所示的网格模型。
图3 网格模型1.3.3 连接关系的构建连接关系包括两部分:接触和运动副,运动副可以实现齿轮的转动,接触可以实现齿轮的传力。
由于workbench会自动创建向邻近位置之间的接触,但默认接触为绑定接触,不符合实际情况,故直接删除,后续手动创建相应接触。
首先在左侧项目树Connections下插入一个Frictional contact,接触面选择其中一个齿轮参与接触的几个齿面,目标面选择另一个齿轮参与接触的几个齿面。
摩擦系数为0.15,Normal Stiffness为1,Update Stiffness为Each iteration,Time Step Controls为Automatic Bisection。