ansys瞬态动力分析
- 格式:pdf
- 大小:1.28 MB
- 文档页数:60
ANSYS模态分析步骤第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。
若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes第2步:指定分析标题/工作名/工作路径,并设置分析范畴1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory2 设置分析范畴Main Menu>Preference,单击Structure,OK第3步:定义单元类型Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。
第4步:指定材料性能Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。
第5步:划分网格Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。
§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。
两个连续时间点间的时间增量称为积分时间步长(integration time step)。
§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。
两个连续时间点间的时间增量称为积分时间步长(integration time step)。
§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
瞬态分析的第一步是建立初始条件,即零时刻的情况,瞬态动力学分析要求给定两种初始条件,:初始位移和初始速度,如果没有设置,两者都将设置为0,然后,指定后续的瞬态载荷步及载荷步选项(对于每一个载荷步都要指定载荷值和时间值,同时要指定其他载荷步选项)。
最后,需要将每一个载荷步写入文件并一次性求解所有载荷步。
具体的加载与求解步骤如下:·指定分析类型选择菜单MainMenu:Solution—NewAnalysis,选择TransientDynamic(瞬态动力学分析)。
·
指定分析选项选择菜单MainMenu:Solution—AnalysisOption,设置MODOPT 为Full(瞬态动力学分析方法,共3种)。
·定义主自由度(仅Reduced方法使用)选择菜单MainMenu:Solution—MasterDOFs—Define,设置MDOF(主自由度数,必须大于节点数的2倍)。
·
施加约束选择菜单MainMenu:Solution,单击Apply按钮,选择Dis—placement,选约束作用位置,输入约束参数。
·施加载荷选择菜单MainMenu:Solution,单击Apply按钮,选择Force,选载荷作用位置,输人载荷参数。
·指定载荷步选择菜单MainMenu:Solution—Time/Frequency,设置载荷步参数。
,
求解选择菜单MainMenu:Solution—CurrentLS。
.
设定下一个载荷步并求解,重复以上步骤。
•ANSYS瞬态动力学分析理论基础本文主要介绍了ansys软件进瞬态动力分析与计算的理论,通过介绍使读者可以更好的理解软件和操作软件以便进行相关的分析。
一假设和限制1、系统的初始条件已知,即速度和位移。
2、结构瞬态分析中当需要时可以考虑陀螺或科里奥力效应。
二结构和其他二阶系统分析对于线性结构的瞬态动力学平衡方程:(1)ANSYS里使用两种方法求解方程(1):向前差分时间积分和Newmark积分(包括改进后的算法称为HHT)。
向前差分方法适用于求解显示的瞬态分析。
Newmark和HHT方法使用隐式方法来求解瞬态问题。
Newmark方法使用有限差分法,在一个时间间隔内有,(2)(3)其中:α,δ:Newmark积分参数我们主要的目的就是计算下一时刻的位移u n+1,则在t n+1时刻的控制方程(1)为:(4)为了求解u n+1,可以把(2)和(3)重新排列,得(5)(6)其中:注意到(5)代入到(6)中,则,可以通过u n+1求出。
由(5)、(6)和(4)得(7)一旦求出u n+1,速度和加速度可以利用(5)和(6)求得。
对于初始施加于节点的速度或加速度可以利用位移约束并利用(3)计算得到。
根据Zienkiewicz的理论,利用(2)和(3)式得到的Newmark求解方法的无条件稳定必须满足:(8)Newmark参数根据下式输入:(9)其中:γ:振幅衰减因子通过观察(8)和(9)可以发现无条件稳定也可以表述为,并且γ≥0。
因此只要γ≥0,则求解就是稳定的。
对于压电分析参数设置为:α=0.25;δ=0.5并且θ=0.5。
通常情况下衰减因子γ=0.005。
当γ=0时即α=0.25,δ=0.5时Newmark方法为平均加速度法。
由于平均加速度法在位移幅值误差方面不产生任何数值阻尼。
如果其他方面也没有阻尼,缺乏数值阻尼在高频结构计算中会产生不可接受的数值噪声。
我们期望有一定水平的数值阻尼并且通过设置γ>0来实现。
ANSYS培训教程:瞬态动力学分析的基本步骤用不同的瞬态动力学方法进行分析时,进行瞬态动力学分析的过程不尽相同。
下面我们首先描述如何用完全法进行瞬态动力学分析的基本步骤,然后在列出用缩减法和模态叠加法时的不同地方。
完全法瞬态动力学分析过程由三个主要步骤组成:1.建模2.加载及求解3.结果后处理模型的建立建模过程和其它类型的分析类似,但应注意以下几点:1.可以用线性和非线性单元。
2.必须指定弹性模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料特性可以是线性的或非线性的,各向同性的或各向异性的,恒定的或和温度有关的。
在划分网格时需要记住以下几点:1. 有限元网格需要足够精度以求解所关心的高阶模态;2. 感兴趣的应力应变区域的网格密度要比只关系位移的区域相对加密一些;3.如果想包含非线性,网格应当细到能够扑捉到非线性效果。
例如,对于塑性分析来说,它要求在较大塑性变形梯度的平面内有一定的积分点密度,所以网格必须加密;4.如果对波传播效果感兴趣,网格应当细到足以解算出波。
基本准则是沿波的传播方向每一波长至少有20个单元。
加载并求解在这一步中,要定义分析类型及选项,加载,指定载荷步选项,并开始有限元求解。
具体步骤如下:1.进ANSYS求解器命令:/SOLUGUI:Main Menu | Solution2.指定分析类型和分析选项(1)指定分析类型(ANTYPE)选择开始一个新的分析。
如果已经完成了静力学预应力或完全法瞬态动力学分析并准备对时间历程进行延伸,或者想重新启动一次失败的非线性分析,则可用Restart。
(Restart要求初始求解过程中生成的文件Jobname.EMAT,Jobname.ESAV及Jobname.DB存在。
新得到的解结果将被附加在初始结果文件Jobname.RST中)。
从弹出的对话框中选择瞬态动力学分析(Transient),并指定位完全法(Full)。
对于质量阵形成方法(Mass Matrix Formulation)建议在大多数分析应用中采用缺省的质量阵形成方式。