九年级下学期数学期末考试试卷及其规范标准答案
- 格式:doc
- 大小:395.34 KB
- 文档页数:8
九年级数学(第1页共6页)人教版2023-2024学年九年级下学期调研考试数 学 试 卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列所给的方程中,是一元二次方程的是A .x 2=xB .2x +1=0C .(x -1)x =x 2D .x +1x=22.下列事件中,是必然事件的是A .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球B .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7C .从车间刚生产的产品中任意抽取一个是次品D .打开电视,正在播放广告3.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150°,弧BC 长为50πcm ,则半径AB 的长为A .50cm B .60cm C .120cmD .30cm4.如图是国旗中的一颗五角星图案,绕着它的中心旋转,要使旋转后的五角星能与自身重合,则旋转角的度数至少为A .30°B .45°C .60°D .72°5.已知电压U 、电流I 、电阻R 三者之间的关系式为:U =IR (或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是A .B .C .D .九年级数学(第2页共6页)6.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字1,2,3,4表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是A .41B .21C .43D .657.如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =25°,则∠BOC的度数为A .30°B .40°C .50°D .60°8.如图,函数y =-x 与函数6y x=-的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,连接AD ,BC .则四边形ACBD 的面积为A .12B .8C .6D .49.己知⊙O 的半径是一元二次方程x 2-3x -4=0的一个根,圆心O 到直线l 的距离d =6,则直线l 与⊙O 的位置关系是A .相切B .相离C .相交D .相切或相交10.如图是二次函数y =ax 2+bx +c (a <0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②4a +2b +c <0;③-2b +c =0;④若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12).其中说法正确的是A .③④⑤B .①②④C .①④⑤D.①③④⑤二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.已知一元二次方程(x -2)(x +3)=0,将其化成二次项系数为正数的一般形式后,它的常数项是☆.九年级数学(第3页共6页)12.五张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、直角三角形、平行四边形图案.现把它们正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为☆.13.Rt △ABC 中,∠C =90°,AC =3,BC =4,把Rt △ABC 沿AB 所在的直线旋转一周,则所得几何体的全面积为☆.14.抛物线y =-12x 2+3x -52的顶点坐标是☆.15.在等腰直角三角形AB C 中,∠C =90°,BC =2cm .如果以AC 的中点O 为旋转中心,将△OCB 旋转180°,使点B 落在点B 1处,那么点B 1和B 的距离是☆cm .16.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数ky x=在第一象限内的图象经过点D ,且与AB ,BC 分别交于E ,F 两点,若四边形BEDF 的面积为9,则k 的值为☆.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分6分=3分+3分)用适当的方法解下列方程:(1)x 2-2x =0(2)2x 2-3x -1=018.(本题满分7分=3分+4分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1(保留画图痕迹);(2)求线段BC 扫过的面积(结果保留π).九年级数学(第4页共6页)19.(本题满分9分=3分+6分)在一个不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,黄球有1个.(1)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(2)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小聪共摸6次小球(每次摸1个球,摸后放回)得22分,问小聪有哪几种摸法?20.(本题满分9分=5分+4分)已知直线y =-x +m +1与双曲线y =mx在第一象限交于点A ,B ,连接OA ,过点A 作AC ⊥x 轴于点C ,若S △AOC =3.(1)求两个函数解析式;(2)求直线y =-x +m +1在双曲线y =xm上方时x的取值范围.九年级数学(第5页共6页)21.(本题满分9分=4分+5分)在等腰Rt △ABC 中,∠ACB =90°,点D 为AB 的中点,E 为BC 边上一点,将线段ED 绕点E 按逆时针方向旋转90°得到EF ,连接DF ,AF .(1)如图1,若点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)如图2,若点G 为AF 的中点,连接DG .过点D 、F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF .若AC =BC =16,CE =2,求DG的长.22.(本题满分9分=4分+5分)已知x 1,x 2是关于x 的一元二次方程x 2+3x +k -3=0的两个实数根.(1)求k 的取值范围;(2)若x 12+2x 1+x 2+k =4,试求k 的值.23.(本题满分10分=4分+3分+3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若∠DCE =30°,DE =2.求:①AB 的长;②的长.九年级数学(第6页共6页)24.(本题满分13分=3分+5分+5分)如图1,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0),C (4,5)两点,与x 轴交于点B (5,0).(1)则抛物线的解析式为☆;(2)如图2,点P 是抛物线上的一个动点(不与点A 、点C 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AC 于点E ,连接BC ,BE ,设点P 的横坐标为m .①当PE =2ED 时,求P 点坐标;②当点P 在抛物线上运动的过程中,存在点P 使得以点B ,E ,C 为顶点的等腰三角形,请求出此时m的值.九年级数学参考答案(第1页共4页)人教版2023-2024学年九年级下学期调研考试数学参考答案一、精心选一选,相信自己的判断!题号12345678910答案ABBDACCABD二、细心填一填,试试自己的身手!11.-612.3513.845p 14.(3,2)15.16.6三、用心做一做,显显自己的能力!17.解:(1)∵x 2-2x =0,∴x (x-2)=0,…………………………………1分x =0,x -2=0,∴x 1=0或x 2=2; (3)分(2)2x 2-3x -1=0,,…………………4分x 1,x 2…………………………………6分18.解:(1)△ABC 绕点O 逆时针旋转90°后的△A 1B 1C1如图所示;(无画图痕迹扣1分) (3)分(2)由旋转可得△OB 1C 1≌△OBC……4分∵OC 2=10,OB 2=2,∴OC,OB ……5分∴BC 扫过的面积=11OCC OBB S S -扇形扇形290360p - …………………………………6分=522p p -=2π.…………………………………7分九年级数学参考答案(第2页共4页)19.解:(1)画树状图如下:………………………2分P (两次都摸到红球)=21126=.…………………………………3分(2)设小聪摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有(6-x -y )次,由题意得:5x +3y +(6-x -y )=22,即2x +y =8,∴y =8-2x ,……………4分∵x ,y ,(6-x -y )均为自然数,6-x -y =6-x -8+2x =x -2≥0,8-2x ≥0,∴2≤x ≤4…………………………………5分当x =2时,y =4,6-x -y =0;…………………………………6分当x =3时,y =2,6-x -y =1;…………………………………7分当x =4时,y =0,6-x -y =2.…………………………………8分小聪共有三种摸法:即摸到红球有2次,黄球有4次,蓝球有0次;红球有3次,黄球有2次,蓝球有1次;红球有4次,黄球有0次,蓝球有2次.……………9分20.解:(1)∵S △AOC =3,设A (a ,b ),∴21ab =3,ab =6,…………………………………1分∴m =ab =6,…………………………………2分m +1=7,…………………………………3分∴y =-x +7,y =6x.即两个函数解析式分别为y =-x +7,y =6x.…………………………………5分(2)联立y =-x +7,y =6x得x 2-7x +6=0.解得:x 1=1,x 2=6.………7分∴A 的坐标是(1,6),B 的坐标是(6,1),直线y =-x +m +1在双曲线y =xm上方时x 的取值范围是1<x <6.……………9分21.解:(1)证明:由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD ,∴∠DCF =∠ADC ,在△ADO 和△FCO 中,∵AOD FOC ADO FCO AD FCìÐ=ÐïïÐ=Ðíï=ïî,∴△ADO ≌△FCO (AAS ),…………………………………3分∴DO =CO ,∴BD =CD =2DO .[注:证四边形ADFC 是平行四边形也正确]………………………4分九年级数学参考答案(第3页共4页)(2)∵DN ⊥BC ,FM ⊥BC ,∴∠DNE =∠EMF =90°,又∵∠NDE =∠MEF =90°-∠FEM ,ED =EF ,∴△DNE ≌△EMF (AAS ),∴DN =EM =12AC =12×16=8,∴NE =MF ,…………………………………6分又∵CE =2,∴BM =BC -ME -EC =16-8-2=6,…………………………………7分∵∠ABC =45°,∴BN =DN =8,∴NE =14-8=6,∴MF =MB =6,∴BF…………………………………8分∵点D 、G 分别是AB 、AF 的中点,∴DG =12BF…………………………………9分22.解:(1)∵一元二次方程x 2+3x +k -3=0有两个实数根,∴△=32-4(k -3)≥0,…………………………………1分∴9-4k +12≥0,-4k ≥-21,…………………………………3分∴k ≤214…………………………………4分(2)∵x 1,x 2是一元二次方程x 2+3x +k -3=0的两个实数根,∴x 12+3x 1+k -3=0,x 12+2x 1=3-k -x 1,…………………………………5分∵x 1+x 2=-3,x 1x 2=k -3,…………………………………6分且x 12+2x 1+x 2+k =4,∴3-k -x 1+x 2+k =4,x 2-x 1=1,………………………7分(x 2-x 1)2=1,(x 2+x 1)2-4x 1x 2=1,(-3)2-4(k -3)=1,∴9-4k +12=1,∴k =5.…………………………………9分23.解:(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°,……………1分∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO ,……2分∵OA =OD ,∴∠ADO =∠A ,……………3分∴∠BDC =∠A .……………4分(2)①∵CE ⊥AE ,∴∠E =∠ADB =90°,∴DB ∥EC ,∴∠DCE =∠BDC ,……………5分∵∠BDC =∠A ,∴∠A =∠DCE ,在Rt △CDE 中,∠DCE =30°,DE =2,∴CD =2DE =4∴∠A =∠DCE =30°,∴AD =CD =4.…………………………………6分设AB =2R ,则BD =R ,∴(2R )2-R 2=42,R=AB =2R.……………7分②由①得∠BOD =2∠A =60°,R…………………………………8分则的长为=9.…………………………………10分九年级数学参考答案(第4页共4页)24.解:(1)抛物线的解析式为:y=-x2+4x+5;…………………………………3分(2)①∵点P的横坐标为m,∴点P的纵坐标为-m2+4m+5,则点E的纵坐标为m+1,………………………4分即P(m,-m2+4m+5),E(m,m+1),由题意,分以下两种情况:(ⅰ)当点P在点E的上方,即-1<m<4时,则PE=-m2+4m+5-(m+1)=-m2+3m+4,ED=m+1,∴-m2+3m+4=2(m+1),解得m=2或m=-1(不符题意,舍去),…………………………………5分则-m2+4m+5=-22+4×2+5=9,此时点P的坐标为P(2,9);……………6分(ⅱ)当点P在点E的下方,即m<-1或m>4时,则PE=m+1-(-m2+4m+5)=m2-3m-4,ED=|m+1|,∴m2-3m-4=2|m+1|,解得m=6或m=-1(不符题意,舍去),…………………………………7分则-m2+4m+5=-62+4×6+5=-7,此时点P的坐标为P(6,-7),∴当PE=2ED时,点P的坐标为P(2,9)或P(6,-7);…………………………………8分②∵B(5,0),C(4,5),E(m,m+1),如图,过C点作CH⊥x轴于点H,过C点作CG⊥PE于点G,∴BC2=26,BE2=(m-5)2+(m+1)2,CE2=2(m-4)2,…9分由等腰三角形的定义,分以下三种情况:(ⅰ)若BC=CE时,△BEC为等腰三角形,则BC2=CE2,即2(m-4)2=26,解得m=4或m=4;………………10分(ⅱ)当BC=BE时,△BEC为等腰三角形,则BC2=BE2,即(m-5)2+(m+1)2=26,解得m=0或m=4(此时点P与点C重合,不符题意,舍去);………………11分(ⅲ)当BE=CE时,△BEC为等腰三角形,则BE2=CE2,即(m-5)2+(m+1)2=2(m-4)2,解得m=34;…………………………………12分综上,m的值为4或4或0或34.…………………………………13分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
九年级数学下学期期末考试试卷(时间90分钟 满分100分)班级 ___ 姓名 学号_____ 得分__ __一、选择题(本大题共10小题,每小题4分,共40分) 1.抛物线2)2(-=x y 的顶点坐标是( A )A .(2,0)B .(-2,0)C .(0,2)D .(0,-2)2.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为 30米的旗杆的高为 ( B ) A .20米 B .18米 C .16米 D .15米3. 如图,AB ∥CD ,AC 、BD 交于O ,BO=7,DO=3,AC=25,则AO 长为( D ) A .10 B .12.5 C .15 D .17.54.如图,梯子(长度不变)跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜 程度之间,叙述正确的是( A ) A .sinA 的值越大,梯子越陡 B .cosA 的值越大,梯子越陡 C .tanA 的值越小,梯子越陡 D .陡缓程度与∠A 的函数值无关(第6题) (第7题)5.已知△ABC∽△DEF,且△ABC 的三边长分别为4,5,6,△DEF 的一边长为2,则△DEF的周长为( D )(A )7.5 (B )6 (C )5或6 (D )5或6或7.56.已知函数y=ax 2+bx+c 图象如图所示,则下列结论中正确的个数( C )① abc <0 ② a- b +c <0 ③ a+b+c >0 ④ 2c =3b A .1 B .2 C .3 D .4 7. 8.如图所示,G 为△ABC 重心(即AD 、BE 、CF 分别为各边的中线),若已知S △EFG = 1,则S △ABC 为( D )A .2B .4C .8D .12(第9题) (第10题)二、填空题(本题共4小题,每小题5分,满分20分)11.将抛物线22x y =先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是3)2(22-+=x y 。
2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。
考试结束,监考人员只将答题卡收回。
4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。
永城2023—2024学年上学期期末学业评价卷九年级数学(人教版)注意事项:1.本试卷共4页.三个大题.满分120分.考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,中只有一个是正确的.1.下列关系式中,是x 的反比剑函数的是()A .B .C .D .2.下面是4个有关航天领域的图标.中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是()A.B .C .D .4.下列四条线段中.能与,,这三条线段组成比例线段的是()A .B .C .D .5.下列图象中.有可能是函数的图象的是()A .B .C .D .6.“绿色电力.与你同行”",我国新能源汽车销售量逐年增加,据统计,2022年新能源汽车年销售量为690万辆.预计2024年新能源汽车手销售量将达到1166万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是()A .B .C .D .7.若关于x 的一元二次方程有实数根,则实数k 的取值范围是()A .B .C .D .1y x =-3y x =-35y x =22y x =-12151101202a =3b =c =11d =2d =36d =4d =2)0(y ax a a =+≠()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2420x x k -+=2k >2k ≥2k <2k ≤8.对于反比例函数,下列结论中错误的是( )A .图象位于第二,四象限B .图象关于y 轴对称C .当时,y 随x 的增大而增大D .若点在图象上,则点也一定在图象上9.如图,一个隧道的横截面是以O 为圆心的圆的一部分,点D 是中弦AB 的中点,CD 经过圆心O 交于点C ,若路面AB =6m ,此圆的半径OA 的长为5m ,则净高CD 的长为( )A .5mB .6m C.m D .9m10.如图,在△ABC 中,AC =BC ,AB =12,把△ABC 绕点A 逆时针旋转60°得到△ADE ,连接CD ,当时,AC 的长为( )A .B .10C .D 二、填空题(每小题3分,共15分)11.“海日生残夜,江春入旧年”.如图所记录的日出美景中,太阳与海天交界处可看成圆与直线,它们的位置关系是______.12.图1是装满了液体的高脚杯(数据如图),用去部分液体后,放在水平的桌面上如图2所示,此时液体AB =______.13.抛物线的部分图象如图所示,当时,x 的取值范围是______.()0k y k x=≤0x >(),a b (),a b --O O 133CD =2y ax bx c =++5y >14.小诚和爸爸搭乘长途汽车回老家过年,在小程序上购票时,系统自动将两人分配到同一排(如图是长途汽车座位示意图),则小诚和爸爸分配的座位恰好是邻座(过道两侧也视为邻座)的概率是______.15.如图,已知反比例函数,.点A 在y 轴的正半轴上,过点A 作直线轴,且分别与两反比例函数的图象交于点C 和点B ,连接OC ,OB .若△BOC 的面积为9,AC :AB =4:5,则______.三、解答题(本大题共8个小题,共75分)16.(10分)用适当的方法解下列一元二次方程:(1);(2).17.(8分)如图.在平面直角坐标系中,△ABC 的顶点均在正方形网络的格点上,已知点C 的坐标为.(1)以点O 为位似中心,在给出的网格内曲使与位似,并且点的坐标为;(2)与的相似比是______.18.(9分)如图.文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A 点120m 处的D 点.测得自己的影长DE 为0.4m ,此时该塔的影子为AC ,她测得点D 与点C 的距离为23m ,已知文文的身高DF 为1.6m .求河南广播电视塔AB 的高.(图中各点都在同一平面内.点A ,C ,D .E 在同一直线上)111(0)k y k x =≥222(0)k y k x=<BC x ∥12k k =()419x x x -=-26160x x --=()4,1-111A B C △111A B C △ABC △1C ()8,2-ABC △111A B C △19.(9分)如图,在平面直角坐标系中,直线与反比例函数在第一象限内的图象交于点.(1)求反比例函数的表达式;(2)直接写出当时,关于x的不等式的解集.20.(9分)掷实心球是2024年郑州巿高中阶段学校招生体育考试的抽考项目,如图1是一名男生投实心球,实心球的行进路线是—条抛物线,行进高度y (m )与水平距离x (m )之间的函数关系如图2所示,掷出时起点处高度为m ,当水平距离为5m 时,实心球行进至最高点4m 处.(1)求y 关于x 的函数表达式(不写x 的取值范围);(2)根据郑州市高中阶段学校招生体育考试评分标准(男生).在投掷过程中.实心球从起点到落地点的水平距离大于等于11.4m 时,此项考试得分为满分10分.请判断该男生在此项考试中是否能得满分,并说明理由.21.(10分)如图,AB 是的直径,点C ,D 是上位于直线AB 异侧的两点,,交CB 的延长线于点E .且BD 评分.(1)求证:DE 为的切线;213y x =-()0k y k x=≠()6,A a 0x >213k x x >-9649O O DE BC ⊥ABE ∠O(2)若,,①求DE 的长;②图中阴影部分的面积为______.22.(10分)如图,抛物线交x 轴于,两点,与y 轴交干点C .(1)求此抛物线的解析式;(2)已知P 为抛物线上一点(不与点B 重合),若点P 关于x 轴对称的点恰好在直线BC 上,求点P 的坐标.23.(10分)已知△ABC 与△DEC 都为等腰三角形,AB =AC ,DE =DC ,.(1)当n =60°时,①如图1,当点D 在AC 上时,BE 与AD 的数量关系是______;②如图2,当点D 不在AC 上时,BE 与AD 的数量关系是______.(2)如图3(点B 位于△CDE 的内部).当n =90°时,①探究线段BE 与AD 的数量关系,并说明理由;②当,时.请直接写出CE 的长.永城2023—2024学年上学期期未学业评价卷九年级数学(人教版)参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.D 5.A 6.A 7.D 8.B 9.D 10.C二、填空题(每小题3分,共15分)11.相交12.4cm 13. 14. 15.-80三、解答题(本大题共8个小题,共75分)16.解:(1).60ABC ∠=︒4AB =2c y x bx =-++()1,0A -()2,0B 2y x b c =-++P 'BAC EDC n ∠=∠=AD BC ∥AB =7AD =04x <<12249x x x -=-,.,.(2).,.由此可得,,.17.解:(1)如图所示.(2)1:2.18.解:太阳光是平行光线,因此.由题意得,.,.m ,m ,(m ).m ,m ,,m .河南广播电视塔的高度为388m .19.解:(1)∵点在直线上,.249x =294x =132x =-232x =2616x x -=269169x x -+=+()2325x -=35x -=±18x =22x =-111A B C △BCA FED ∠=∠AB AC ⊥DF AC ⊥ABC DFE ∴△△∽AB DF AC DE∴=120AD = 23CD =97AC AD CD ∴=-=0.4DE = 1.6DF =1.6970.4AB ∴=388AB ∴=∴()6,A a 213y x =-26133a ∴=⨯-=即点A 的坐标为.点A 在反比例函数的图象上,.反比例函数的表达式为.(2)当时,关于x 的不等式的解集为.20.解:(1)设y 关于x 的函数表达式为.把代入表达式,得,解得..(2)该男生在此项考试中能得满分.理由:令,即,解得,(舍去).,该男生在此项考试中能得满分.21.(1)证明:连接OD .∵BD 平分,.,...,.∵点D 在上,DE 为的切线.(2)解:①如图,过点O 作,垂足为F .()6,3k y x=6318k =⨯=∴∴18y x=0x >213k x x >-06x <<()254y a x =-+960,49⎛⎫ ⎪⎝⎭()29605449a =-+449a =-24(5)449y x ∴=--+0y =()2454049x --+=112x =22x =-1211.4> ∴ABE ∠ABD DBE ∴∠=∠OD OB = ODB ABD ∴∠=∠ODB DBE ∴∠=∠OD BC ∴∥DE BC ⊥ OD DE ∴⊥O ∴O OF BC ⊥,.,..在Rt △OBF 中,由(1)得,,.四边形OFED 为矩形..②.22.解:(1)将,代入,得解得lc =2.抛物线的解析式为.(2)设直线BC 的解析式为.由(1)中得,点C 的坐标为.将,代入,得,解得,直线BC 的解析式为.设点的坐标为,∵点P 与点关于x 轴对称,点P 的坐标为.∵点P 在抛物线上,.解得,.又∵点P 不与点B 重合,..点P 的坐标为.4AB = 122B OB A ==∴60ABC ∠=︒ 30BOF ∴∠=︒112BF OB ∴==OF ===OD DE ∥DE BC ⊥90ODE E OFE ∴∠=∠=∠=︒∴DE OF ∴==2π3()1,0A -()2,0B 2y x bx c =-++10,420.b c b c --+=⎧⎨-++=⎩12b c =⎧⎨=⎩∴22y x x =-++y kx m =+22y x x =-++()0,2()2,0B ()0,2C y kx m =+202h m m +=⎧⎨=⎩12k m =-⎧⎨=⎩∴2y x =-+P '(),2a a -+P '∴(),2a a -222a a a -=-++∴12a =22a =-2a ∴=-2224a ∴-=--=-∴()2,4--23.解:(1)①,②(2)①.理由如下:当时,,∵,.△ABC 与△DEC 为等腰直角三角形..则,.,,....②CE 的长为.BE AD =BE AD=BE =90n =︒90BAC EDC ∠=∠=︒AB AC =DE DC =∴45ACB ABC DCE DEC ∴∠=∠=∠=∠=︒BC ==EC ==DC AC EC BC ∴==45DCE DCB ECB ∠=∠+∠=︒45ACB ACD DCB ∠=∠+∠=︒DCA ECB ∴∠=∠DCA ECB ∴△△∽AD DC BE EC ∴==BE ∴=。
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
九年级数学模拟试题(2023.3)本试题共8页,满分为150分,考试时间为120分钟。
答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试卷规定的位置。
考试结束后,将答题卡和试卷一并交回。
注意事项:1.答选择题时,必须使用2B铅笔填涂答题卡上相应题目的答案标号,修改时,要用橡皮擦干净。
2.答非选择题时,必须使用0.5毫米黑色签字笔书写,要求笔迹清晰、字体工整,务必在答题卡题号所指示的答题区域内作答。
第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4题,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.64的算术平方根是()A.8B.±4C.±8D.42.如图是某几何体的三视图,该几何体是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到1500000次,数据1500000用科学记数法表示为()A.1.5×105B.1.5×106C.0.15×105D.1.5×1074.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2=()A.25°B.35°C.45°D.55°5.民族图案是数学文化中的一块瑰宝,下列图案中既是轴对称图形也是中心对称图形的是()A.B.C.D.6.实数a 、b 在数轴上的位置如图所示,则下列结论不正确的是( )A .ab <0B .a +b >0C .|a |>|b |D .a +1<b +17.将分别标有“最”、“美”、“济”、“南”四个汉字的小球装在一个不透明的口袋中,这些球除汉字不同外其他完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“济南”的概率是( ) A .16B .14C .13D .128.如果a +b =2,那么代数式(a −b 2a )⋅aa−b 的值是( )A .2B .﹣2C .1D .﹣19.如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②∠AFB =2∠ACB ;③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =√3AB .其中正确结论的个数是( )A .4B .3C .2D .110.若二次函数y =ax 2﹣2x +5的图象在直线x =2的右侧与x 轴有且只有一个交点,则a 的取值范围是( )A. a <−14 B. a =15 C. a <−14 或a =15 D. −14<a <0或a =15第II卷(非选择题共102分)二.填空题(本大题共6个小题,每小题4分,共24分.)11.因式分解:x2﹣6x+9=.12.已知关于x的一元二次方程x2+ax+4=0有一个根为1,则a的值为.13.小华在如图所示的4×4正方形网格纸板上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.第13题图第14题图14.如图,⊙O是正六边形ABCDEF的外接圆,正六边形的边长为2√3,则阴影部分的面积为.15. 学校利用课后服务时间开展趣味运动项目训练.在直线跑道上,甲同学从A处匀速跑向B处,乙同学从B处匀速跑往A处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y(米),y与x之间的函数关系如图所示,则图中t的值是.第15题图第16题图16.如图,三角形纸片ABC中,∠BAC=90°,AB=3,AC=5.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则tan∠DAE= .三.解答题(共8小题)17.(6分)计算:|−√3|+(15)﹣1−√27+4cos30°.18.(6分)解不等式组:{x−3(x−2)≥4x−23<x+1,并写出该不等式组的非负整数解.19.(6分)如图,E ,F 是▱ABCD 的对角线AC 上两点,且AF =CE ,求证:DF ∥BE .20.(8分)为了解学生对校园安全知识的掌握情况,现随机选取甲,乙两个班,从中各随机抽取20名同学组织一次测试,并对在本次测试成绩(满分为100分)进行统计学处理,过程如下: 【收集数据】甲班20名同学的成绩统计数据:(单位:分) 87 90 60 77 92 83 56 76 85 71 95 95 90 68 78 80 68 95 85 81乙班20名同学中成绩在70≤x <80分之间数据:(满分为100分)(单位:分) 70 72 75 76 76 78 78 78 79 【整理数据】(成绩得分用x 表示) (1)完成下表甲班成绩得分扇形统计图(x 表示分数)【分析数据】请回答下列问题: (2)填空:(3)在甲班成绩得分的扇形统计图中,成绩在70≤x <80的扇形所对的圆心角为 度. (4)若成绩不低于80分为优秀,请以甲班、乙班共40人为样本估计全年级1600人中优秀人数为多少?A甲班21.(8分)如图,已知AB是⊙O的直径,DC与⊙O相切于点C,交AB的延长线于点D,过点B 作BH⊥CD于点H.(1)求证:∠BAC=∠BCD;,求BH的长.(2)若⊙O的半径为5,sin∠BAC=√5522. (8分)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,小汽车到测速仪C的水平距离AD=14 m,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(10分)为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境.某学校准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数量是用13500元购买B种垃圾桶的组数量的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该学校计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?24.(10分)如图1,一次函数y=k1x+b与反比例函数y=k2x在第一象限交于M(1,4)、N(4,m)两点,点P是x轴负半轴上一动点,连接PM,PN.(1)求反比例函数及一次函数的表达式;(2)若△PMN的面积为9,求点P的坐标;(3)如图2,在(2)的条件下,若点E为直线PM上一点,点F为y轴上一点,是否存在这样的点E和点F,使得以点E、F、M、N为顶点的四边形是平行四边形?若存在,直接写出点E的坐标;若不存在,请说明理由.图1图225.(12分)【特例感知】(1)如图1,已知△AOB 和△COD 是等边三角形,直接写出线段AC 与BD 的数量关系是 ; 【类比迁移】(2)如图2,△AOB 和△COD 是等腰直角三角形,∠BAO =∠DCO =90°,请写出线段AC 与BD 的数量关系,并说明理由. 【方法运用】如图3,若AB =6,点C 是线段AB 外一动点,AC =2√3,连接BC .若将CB 绕点C 逆时针旋转90°得到CD ,连接AD ,求出AD 的最大值.图1图2A图326. (12分)如图,抛物线y=a x2+b x+4与x轴交于A(﹣2,0),B(3,0)两点,交y轴于点C,P是第一象限内抛物线上的一点且横坐标为m.(1)求抛物线的表达式;(2)如图1,连接AP,交线段BC于点D,若PDDA =15,求m的值.(3)如图2,已知抛物线的对称轴交x轴于点H,与直线AP,BP分别交于E、F两点.试问EH+FH 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.图1图2。
九年级数学第二学期第二十八章统计初步专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,62、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.83、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.924、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.85、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式6、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的()A.平均数B.加权平均数C.众数D.中位数7、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量8、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.259、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环10、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?3、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)(2)估算袋中白球的个数.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:甲校成绩统计表(1)甲校参赛人数是______人,x ______;(2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?-参考答案-一、单选题1、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.3、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.7、D【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.8、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).9、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,⨯=条,成活的鱼的总数为:25000.82000则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.三、解答题1、(1)40;(2)见解析;(3)360(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060⨯(人). ∴估计该校表示“很喜欢”的A 类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25.(2)设袋中白球为x 个,4 0.254x=+, x =12,经检验x =12是方程的解,答:估计袋中有2个白球.【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.4、(1)见解析;(2)B ;(3)1620人.【分析】(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A 、B 组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:总人数为:90520360︒÷=︒人,∵两校参赛人数相等,∴甲校参赛人数为20人,∴2011081x=---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:787.52+=分;两校得分的平均分数一样,中位数分数乙校大于甲校,∴两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.。
乌鲁木齐市第九中学2023-2024学年第一学期期末考试九年级数学问卷(考试时间:120分钟;试卷分值:150分)一.单选题(本小题共9小题,每题4分,共36分)1. 下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B. 抛掷一枚正六面体骰子,朝上一面的点数小于7C. 在纸上画两条直线,这两条直线平行D.在一只装了红色卡片的袋子里,摸出一张白色卡片2. 已知X1,X2是方程x2=2x+1的两个根,+的值为( )A. B.2 C. D.-23.已知反比例函数则下列结论不正确的是( )A.图像必过点(-1,2)B.若x>1,则-2<y<0C.y随x的增大而增大D.图像在第二、四象限内4.一次同学聚会,大家见面都要互相赠送小礼品,已知这次同学聚会共有90件礼品,有x人参加聚会,根据题意可列方程()A.x(x-1)=90B. x(x-1)=C. x(x+1)=90D. x(x-1)=905.如图,在△ABC中∠B=41°,将△ABC绕点A逆时针旋转至△ADE使点B落在BC的延长线上的D点处,则∠BDE=()A.90°B.82°C.80°D.81°6.如图,在平行四边形ABCD中,E是BC上的三等分点,AE交BD于F,则△BEF与△DAF的面积比为( )A.1:2B.1:3C.1:4D.1:97.如图,AB是Oo的直径,弦CD⊥AB于点E,∠COB=45°,OC=3cm,则BE等于( )A.)cmB.1cmC. cmD.)cm第5题图第6题图第7题图第8题图8.如图,要用一个半径为24cm扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆半径长为10cm,则这个扇形的圆心角的度数为()A.120°B.135°C.150°D.160°9.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过点A(-2,0)和点B(4,0),点C为抛物线的顶点,则下列结论:①abc>0;②关于x的不等式ax2+bx+c<0的解集为-2<x<4;③3a+c<0;④若△ABC是直角三角形,则点C的坐标为(1,-3);⑤若m为任意实数,则am2+bm>a+b.结论正确的个数( ) A.2 B.3 C.4 D.5第9题图第11题图第15题图二.填空题(本大题共6小题,每小题4分,共24分)10.若点A(m,5)与点B(-2, n)关于原点对称,则2m+n的值为。
常州市教育学会学业水平监测九年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为90分钟.考生应将答案全部填写在答题卡相应的位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填涂好答题卡上的考生信息.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分)1.tan45°的值是()A .1BCD .2.方程的根是()A .B .C .D .3.已知圆弧所在圆的半径是12,所对的圆心角是60°,则这条弧的长是( )A .3元B .4元C .6元D .8元4.用一根长22cm 的铁丝围成面积是30cm 2的矩形.假设矩形的一边长是x cm ,则可列出方程()A .x (22-x )=30B .x (11-x )=30C .x (22-2x )=30D .2x (22-x )=305.在2023年杭州第19届亚运会的跳水男子1米板决赛中,中国跳水队的王宗源摘金,六跳的成绩分别是79.50分、69.00分、76.80分、83.30分、69.30分、81.60分,则这六跳成绩的中位数是()( )A .78.15分B .79.50分C .80.05分D .83.30分6.利用相机的“微距模式”可以拍摄得到与实际物体等大或比实际物体稍大的图像,如图是一个微距拍摄成像的示意图.若拍摄60mm 远的物体AB ,其在底片上的图像的宽是36mm ,焦距是90mm ,则物体AB 的宽是( )(第6题)A .6mmB .12mmC .24mmD .30mm122(1)4x +=121x x ==121,1x x ==-123,5x x ==121,3x x ==-A B ''7.如图,将圆周六等分,B 、D 是其中两个等分点,点A 、C 分别在优弧、劣弧上,则∠BAD :∠BCD的值是( )(第7题)A .1:2B .2:3C .2:5D .3:58.随着科技的进步,机器人在各个领域的应用越来越广泛,如图为正方形形状的擦窗机器人,其边长是28cm .在某次擦窗工作中,PM 、PN 为窗户的边缘,擦窗机器人的两个顶点A 、B 分别落在PM 、PN 上,PA =14cm ,将擦窗机器人绕中心O 逆时针旋转一定的角度,使得,则旋转角度是( )(第8题)A .15°B .30°C .45°D .60°二、填空题(本大题共8小题,每小题2分,共16分)9.若,则______.10.关于的一元二次方程有两个不相等的实数根,则的取值范围是______.11.某班选10名学生参加电脑汉字录入比赛,参赛学生每分钟录入汉字的个数如下表:录入汉字/个132133134135136137参赛学生/人014122则参赛学生比赛成绩的众数是______个.12.如图,小明在周末爬山锻炼身体,他从山脚下的点A 出发,沿着一条坡角是30°的坡道向上走了120m 到达点B ,则此时小明距离山脚的垂直高度BC 是______m .BD BD AD PM ∥12a b =a b a+=x 220x x k -+=k(第12题)13.如图,在用配方法解一元二次方程x 2+6x =40时,配方的过程可以用拼图直观地表示,即看成将一个长是(x +6)、宽是x 、面积是40的矩形割补成一个正方形,则m 的值是______.(第13题)14.如图,DE 是△ABC 的中位线,FG 是△BDE 的中位线.设△DFG 的面积是S 1,△ABC 的面积是S 2,则=______.(第14题)15.在如图的正方形区域内任意取一点P ,则点P 落在阴影部分的概率是_______.(第15题)16.如图,在Rt 中,,垂足为,以CD 为直径的交BC 于点,连接AE ,交于点,连接DF .已知,则______.12S S ABC △90,ACB CD AB ∠=︒⊥D O E O F 3tan ,44DFE CE ∠==AC =(第16题)三、解答题(本大题共9小题,共68分.第17、25题每题10分,第18、20题每题6分,第19题5分,第21、24题每题7分,第22题9分,第23题8分)17.(1)解方程:(2)计算.18.红梅公园是常州市最大的国家级重点公园,园内的“红梅阁”、“文笔塔”、“屠一道根艺藏珍馆”是其中的3个知名景点.小林游玩红梅公园时,准备从这3个景点中选择2个景点游玩(假设每个景点被选择的可能性相同),求小林选择“红梅阁”与“文笔塔”游玩的概率.19.如图,网格中每个小正方形的边长均是1,点O 、线段AB 的端点均在格点上,根据下列要求画图:(第19题)(1)以点O 为位似中心,在网格中把线段AB 按相似比2:1放大,得线段;(2)在网格中以(1)中的为边画Rt ,其中点C 在格点上,,且.20.阳湖水蜜桃是常州特产,有“太湖仙果”的美誉.某农场2022年种植水蜜桃20亩,平均亩产量是1000kg .2023年该农场扩大了种植面积,并引进新品种,使总产量增长到33800kg .已知种植面积的增长率与平均亩产量的增长率相同,求平均亩产量的增长率.21.如图,长4m 的楼梯AB 的倾斜角∠ABD =60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD =37°,求调整后的楼梯AC 的长(精确到0.1m ,参考数据:sin37≈0.60,cos37≈0.80,tan37≈0.75).2230x x +-=2cos 3045+︒︒A B ''A B ''A B C ''△90B A C ''∠=︒1tan 2A CB ''∠=1.73≈ 1.41≈(第21题)22.目前我国射击运动发展较快,许多中小学开始推广普及射击运动.下图为甲、乙两名射击爱好者在相同条件下6次射击成绩.(1)填表并判断:______的成绩更稳定(填“甲”或“乙”);人员平均数方差甲71乙7______(2)在一组数据中,各数据与它们的平均数的差的绝对值的平均数,叫做这组数据的“平均差”,即,“平均差”也能描述一组数据的离散程度.请分别计算甲、乙成绩的“平均差”,并根据结果,简要概括“平均差”如何描述一组数据的离散程度.(3)把函数中自变量的一组值和对应的函数值分别看成样本;样本.这两个样本的方差与之间有怎样的函数关系?请直接写出结果.23.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,点D 在OC 的延长线上,且∠CAD =∠B .12n x x x 、、x ()121n T x x x x x x n=-+-++- 21y x =+12:,n A x x x 、、12:n B y y y 、、2y S 2x S(第23题)(1)判断直线AD 与⊙O 的位置关系,并说明理由;(2)若∠D =∠B ,⊙O 的半径是4,求AD 的长.24.如图,将半径是1的量角器中心与坐标原点重合,0线与x 轴重合,90°线与y 轴重合,OA 、OB 、OC 对应的度数分别是75°、x °、15°(15<x <75),过点B 作x 轴的垂线,垂足为D (m ,0).(1)cos x °=______(用含m 的代数式表示);(2)通过该图形分析,判断cos75°、cos x °、cos15°的大小关系:______(用“<”连接);(3)请借助该图形,求cos15°-cos75°的值.(第24题)25ABC 是⊙O 的内接三角形,D 是上一点(点D 与点B 、C 不重合),AD 、BC 相交于点E .(1)∠ADB =______°,⊙O 的半径为_______;(2)当AD =4时(点O 在AD 的下方).①求BD 的长;②点F 、G 分别在射线DC 、线段AD 上,△FDG ∽△CDE .若DG 的长.(第25题) (备用图)BC AF参考答案一、选择题(本大题共8小题,每小题2分,共16分)1.A 2.D 3.B 4.B 5.A 6.C 7.A 8.B二、填空题(本大题共8小题,每小题2分,共16分)9.3 10.k <1 11.134 12.60 13.3 14. 15. 16.三、解答题(本大题共9小题,共68分.第17、25题每题10分,第18、20题每题6分,第19题5分,第21、24题每题7分,第22题9分,第23题8分)17.解:(1) (2)原式.18.解:记“红梅阁”为A,“文笔塔”为B ,“屠一道根艺藏珍馆”为C ,则列表如下(列表或画树状图均可):第二个游玩景点结果第一个游玩景点A B C A(A ,B )(A ,C )B(B ,A )(B ,C )C (C ,A )(C ,B )一共6种等可能的结果,其中选择A 、B 的有2种.∴P (小林选择“红梅阁”与“文笔塔”游玩).答:小林选择“红梅阁”与“文笔塔”游玩的概率是.19.解:(1)画图正确.(2)画图正确.20.解:设平均亩产量的增长率为x ,由题意得20(1+x )×1000(1+x )=33800.11644π-2532214x x ++=2(1)4x +=12x +=±121,3x x ==-2=+314=+74=2163==13解得x 1=0.3,x 2=-2.3(舍).答:平均亩产量的增长率为30%.21.解:在Rt 中,..在Rt 中,..答:调整后的楼梯的长约为.22.解:(1)甲;4.(2);.且由(1)可得甲的成绩更稳定,一组数据的“平均差”越小(大),该组数据的离散程度越小(大).(3).23.解:(1)相切.理由如下:∵AB 是直径,∴∠ACB =90°.∴∠B +∠BAC =90°.∵∠CAD =∠B ,∴∠CAD +∠BAC =90°,即∠OAD =90°,OA ⊥AD .又∵OA 是半径,∴AD 与⊙O 相切.(2)∵∠CAD =∠B ,∠D =∠B ,∴∠CAD =∠D .∴AC =CD .∵∠OAD =90°,∴∠D +∠DOA =90°,∠CAD +∠OAC =90°∴∠DOA =∠OAC .∴OC =AC .∴OC =CD .∴OD=2OC =8.24.解:(1)m .(2)cos75°<cos x °<cos15°.(3)如图,过点A 作AH ⊥x 轴,垂足为H ,过点C 作CI ⊥y 轴,垂足为I ,AH 、CI 相交于点Q .则四边形OHQI 是矩形,cos75°=OH ,cos15°=cos ∠OCI =CI .∴cos15°-cos75°=CI -OH =CI -IQ =CQ .∵OA =OC ,又∵∠AOC =75°-15°=60°,∴△AOC 是等边三角形.∴AC =OA =1,∠CAQ =60°-15°=45°.∵∠AQC =90°,.ABD △sin AD ABD AB∠=sin 4sin 60AD AB ABD ∴=⋅∠=︒=ACD △sin AD ACD AC∠= 5.8sin AD AC ACD ∴==≈≈∠AC 5.8m 12(|97||67||77||77||77||67|)63T =-+-+-+-+-+-=甲15(|37||67||87||87||87||97|)63T =-+-+-+-+-+-=乙T T < 甲乙∴224y x S S =AD ∴==sin 45CQ AC ∴=⋅︒=cos15cos 75-︒︒25.解:(1).(2)①作,垂足为.则.②作,垂足为.或.∵△FDG ∽△CDE ,∴∠DFG =∠DCE =∠DA B .∵∠FDG =∠ADB ,∴△DFG ∽△DAB .当时,,解得;当时,,解得.综上所述,的长是或.AH BD ⊥H cos 602,sin 60DH AD AH AD =⋅︒==⋅︒=1BH ∴==3BD DH BH ∴=+=AI DC ⊥IAC AC = 60ADC ABC ∴∠=∠=︒sin 60cos 602AI AD DI AD ∴=⋅︒==⋅︒=AF = 32FI ∴===37222DF ∴=+=31222DF =-=. DG DF DB DA∴=72DF =7234DG =218DG =12DF =1234DG =38DG =DG 21838。
九年级下学期期末考试试卷
数 学
一、选择题(本大题共10道小题,每小题3分,满分30分.每道小题给出的四个选项中,只有一项是符合题设要求的,
1.若反比例函数)0(≠=
k x
y 的图象经过点P (-1,1),则k 的值是 A .0 B .-2 C .2 D .-1 2.一元二次方程652=+x x 的一次项系数、常数项分别是
A. 1,5
B. 1,-6
C. 5,-6
D. 5,6 3.一元二次方程210x x ++=的根的情况为
A .有两个相等的实数根;
B .没有实根;
C .只有一个实数根;
D .有两个不相等的实数根;
4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为
A .9cm 2
B .16cm 2
C .56cm 2
D .24cm 2 5.000sin30tan 45cos60+-的值等于
B.0
C.1
D.
6.在直角三角形ABC 中,已知∠C=90°,∠A=60°,AC=BC 等于 A .30 B .10 C .20 D .
02=++c bx ax 7.如图1,Rt △ABC ∽Rt △DEF ,∠A=35°,则∠E 的度数为
A.35°
B.45°
C.55°
D.65°
图1 图2 图3
8.如图2,为测量河两岸相对两电线杆A 、B 间的距离,在距A 点16m 的C 处(AC ⊥AB ),测得∠ACB =52°,则A 、B 之间的距离应为 A .16sin 52°m B .16cos 52°m C .16tan 52°m
D.
16
tan 52°
m
9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,
再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙? A .100只 B .150只 C .180只 D .200只 10.如图3,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为
A .253
B .354
C .455
D .
355
二、填空题(本大题共8道小题,每小题3分, 满分24分)
11.已知函数
是反比例函数,则m 的值为 1 .
12.已知关于x 的一个一元二次方程一个根为1,则
c b a ++=____0___.
13.甲同学的身高为1.5m ,某一时刻他的影长为1m ,此时一塔影长为20 m ,则该塔高为__30__m.
得分 22
(1)m y m x
-=+
14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是.22S 17,15S ==乙甲.则成绩比较稳定的是乙(填“甲”、“乙”中的一个). 15.已知α是锐角,且35Sin α=
,则tan α=4
3
. 16.如图4,王伟家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60度方向上的500m 处,那么水塔所在的位置到公路的距离AB 是250
图4
17.已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为
2
1
. 18.已知关开220x x x a +-=的一元二次方程的两个实根为12,x x 且
121123
x x +=则a 的值为3.
三、解答题(每小题6分, 满分12分)
19.解下列方程
(1)x (x -2)+x -2=0.(2)x 2-4x -12=0
解:(1)提取公因式,得(x -2)(x +1)=0,解得x 1=2,x 2=-1. 3分 (2). x 1=6,x 2=-26分
20.已知1-=x 是一元二次方程022=--mx x 的一个根,求m 的值和方程的另一个根.
解:m =1, 3分; 另一个根为2=x 6分
四、解答题(每小题8分, 满分16分)
21.如图5,在△ABC 中,∠ACB=90°,CD ⊥AB,垂足为D,若角B=30°,CD=6,求AB 的长.
解:38 AB
图5
22.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图6).
图6 根据以上提供的信息解答下列问题:
(1)本次问卷调查共抽取的学生数为___200_人,表中m 的值为__90__; (2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少? 解:(1)40÷20%=200人,
200×45%=90人;
2分 (2)
50
200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所示:
第22题答图5分
(3) 2000×10%=200人,
答:这些学生中“不太了解”梅山文化知识的人数约为200人.8分
五、解答题(每小题9分, 满分18分)
23.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
解:(1)设平均每次下调的百分率为x.
由题意,得5(1-x)2=3.2.
解方程,得x1=0.2,x2=1.8.
因为降价的百分率不可能大于1,所以x2=1.8不符合题意,
符合题目要求的是x1=0.2=20%.
答:平均每次下调的百分率是20%. 5分
(2)小华选择方案一购买更优惠.
理由:方案一所需费用为3.2×0.9×5 000=14 400(元),
方案二所需费用为3.2×5 000-200×5=15 000(元).
∵14 400<15 000,
∴小华选择方案一购买更优惠.9分
24.如图7,已知△ABC∽△ADE,AE=5 cm,EC=3 cm,BC=7 cm,∠BAC=45°,∠C=40°.
(1)求∠AED和∠ADE的大小;
(2)求DE的长
.
图7
解:(1)∠AED=40°,∠ADE=95°. 4分
(2)∵△ABC∽△ADE,∴AE
AC
=
DE
BC
,即
5
537
DE
=
+
,∴DE=4.375 cm
9分
六、综合探究题 (每小题10分,满分20分)
25.超速行驶是引发交通事故的主要原因之一,上周末,小明和三位同学尝试用自己所学的知识检测车速,如图8,观测点设在A处,离娄新高速的距离(AC)为30 m,这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为4s,∠BAC=75°.
(1)求B、C两点的距离;
(2)请判断此车是否超过了娄新高速100km/h的限制速度?(计算时距离精确到1 m,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,3≈1.732,100 km/h≈27.8m/s)
得分
图8
解:(1)在Rt △ABC 中,∠ACB =90°, ∠BAC =75°,AC =30 m ,
∴BC =AC ·tan ∠BAC =30×tan 75°≈30×3.732≈112 m ; 6分 (2)∵此车速度112÷4=28m/s>27.8m/s ≈100 km/h , ∴此车超过限制速度.
10分
26.如图9,一次函数y =kx +b 与反比例函数y =6
x (x >0)的图象交于A (m ,6),B (3,n )两点.
(1)求一次函数的解析式; (2)求△AOB 的面积.
图9
解:(1)分别把A (m ,6),B (3,n )代入y =6
x (x >0)得,6m =6,3n =6,解得m =
1,n =2,∴A 点坐标为(1,6),B 点坐标为(3,2).把点A (1,6),B (3,2)代
入y =kx +b 得,⎩⎨⎧k +b =6,3k +b =2,解得⎩⎨⎧k =-2,b =8.∴一次函数的解析式为y =-2x +8; 5分
(2)设一次函数y =kx +b 与y 轴交于点C ,与x 轴交于点D.当x =0时,y =-2x +8=8,则C 点坐标为(0,8).当y =0时,则有-2x +8=0,解得x =4,∴D 点坐标为(4,0),∴S △AOB =S △COD -S △COA -S △BOD =12×4×8-12×8×1-1
2×4×2=8.
10分。